1
|
Sakamuri SSVP, Sure VN, Oruganti L, Wisen W, Chandra PK, Liu N, Fonseca VA, Wang X, Klein J, Katakam PVG. Acute severe hypoglycemia alters mouse brain microvascular proteome. J Cereb Blood Flow Metab 2024; 44:556-572. [PMID: 37944245 PMCID: PMC10981402 DOI: 10.1177/0271678x231212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Hypoglycemia increases the risk related to stroke and neurodegenerative diseases, however, the underlying mechanisms are unclear. For the first time, we studied the effect of a single episode (acute) of severe (ASH) and mild (AMH) hypoglycemia on mouse brain microvascular proteome. After four-hour fasting, insulin was administered (i.p) to lower mean blood glucose in mice and induce ∼30 minutes of ASH (∼30 mg/dL) or AMH (∼75 mg/dL), whereas a similar volume of saline was given to control mice (∼130 mg/dL). Blood glucose was allowed to recover over 60 minutes either spontaneously or by 20% dextrose administration (i.p). Twenty-four hours later, the brain microvessels (BMVs) were isolated, and tandem mass tag (TMT)-based quantitative proteomics was performed using liquid chromatography-mass spectrometry (LC/MS). When compared to control, ASH significantly downregulated 13 proteins (p ≤ 0.05) whereas 23 proteins showed a strong trend toward decrease (p ≤ 0.10). When compared to AMH, ASH significantly induced the expression of 35 proteins with 13 proteins showing an increasing trend. AMH downregulated only 3 proteins. ASH-induced downregulated proteins are involved in actin cytoskeleton maintenance needed for cell shape and migration which are critical for blood-brain barrier maintenance and angiogenesis. In contrast, ASH-induced upregulated proteins are RNA-binding proteins involved in RNA splicing, transport, and stability. Thus, ASH alters BMV proteomics to impair cytoskeletal integrity and RNA processing which are critical for cerebrovascular function.
Collapse
Affiliation(s)
- Siva SVP Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lokanatha Oruganti
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Wisen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Ning Liu
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiaoying Wang
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jennifer Klein
- Department of Biochemistry & Molecular Biology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
| |
Collapse
|
2
|
Tanaka K, Okada Y, Umezu S, Hashimoto R, Tomoyose Y, Tateyama R, Hori Y, Saito M, Tokutsu A, Sonoda S, Uemura F, Kurozumi A, Tanaka Y. Comparative effects of fixed-dose mitiglinide/voglibose combination and glimepiride on vascular endothelial function and glycemic variability in patients with type 2 diabetes: A randomized controlled trial. J Diabetes Investig 2024; 15:449-458. [PMID: 38149694 PMCID: PMC10981143 DOI: 10.1111/jdi.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION The aim of this study was to compare the effects of mitiglinide/voglibose with those of glimepiride on glycemic variability and vascular endothelial function in patients with type 2 diabetes. MATERIALS AND METHODS It was a multicenter, open-label, randomized, crossover study. Hospitalized patients received either mitiglinide/voglibose (three times daily administration of 10 mg mitiglinide and 0.2 mg voglibose) or glimepiride (once-daily 2 mg) in random order, each for 5 days. The reactive hyperemia index (RHI) and the mean amplitude of glycemic excursions (MAGE) were measured as co-primary endpoints using reactive hyperemia peripheral arterial tonometry and continuous glucose monitoring. RESULTS The analysis included 30 patients (15 in each group). The RHI was 1.670 ± 0.369 during treatment with mitiglinide/voglibose and 1.716 ± 0.492 during treatment with glimepiride, with no significant difference between the two. MAGE was significantly lower in the mitiglinide/voglibose group (47.6 ± 18.5 mg/dL) than in the glimepiride group (100.6 ± 32.2 mg/dL). Although the mean blood glucose levels over the entire 24 h period were comparable between the two groups, the use of mitiglinide/voglibose was associated with a lower standard deviation of mean glucose, coefficient of variation, and mean postprandial glucose excursion compared with glimepiride. The time below range (<70 mg/dL) and the time above range (>180, >200, and 250 mg/dL) were lower in the mitiglinide/voglibose group, while the time in range (70-180 mg/dL) was higher. CONCLUSIONS In our short-duration randomized crossover study, although not impacting vascular endothelial function, mitiglinide/voglibose demonstrated potential benefits in reducing glycemic variability, postprandial hyperglycemia, and hypoglycemia in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kenichi Tanaka
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yosuke Okada
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Clinical Research CenterHospital of the University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Saeko Umezu
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Ryoma Hashimoto
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yukiko Tomoyose
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Rina Tateyama
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yuri Hori
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Momo Saito
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Akemi Tokutsu
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Satomi Sonoda
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Fumi Uemura
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Akira Kurozumi
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Wakamatsu Hospital of the University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of MedicineUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| |
Collapse
|
3
|
Huang C, Huang L, Huang Q, Lin L, Wang L, Wu Y, Wu K, Gao R, Liu X, Liu X, Qi L, Liu L. Mitophagy disorder mediates cardiac deterioration induced by severe hypoglycemia in diabetic mice. Mol Cell Endocrinol 2023; 575:111994. [PMID: 37330037 DOI: 10.1016/j.mce.2023.111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Severe hypoglycemia is closely related to adverse cardiovascular outcomes in patients with diabetes; however, the specific mechanism remains unclear. We previously found that severe hypoglycemia aggravated myocardial injury and cardiac dysfunction in diabetic mice, and that the mechanism of damage was related to mitochondrial oxidative stress and dysfunction. Based on the key regulatory role of mitophagy in mitochondrial quality control, this study aimed to further explore whether the myocardial damage caused by severe hypoglycemia is related to insufficient mitophagy and to clarify their underlying regulatory relationship. After severe hypoglycemia, mitochondrial reactive oxygen species increased, mitochondrial membrane potential and ATP content decreased, and pathological mitochondrial damage was aggravated in the myocardium of diabetic mice. This was accompanied by decreased mitochondrial biosynthesis, increased fusion, and downregulated PTEN-induced kinase 1 (PINK1)/Parkin-dependent mitophagy. Treating diabetic mice with the mitophagy activator and polyphenol metabolite urolithin A activated PINK1/Parkin-dependent mitophagy, reduced myocardial oxidative stress and mitochondrial damage associated with severe hypoglycemia, improved mitochondrial function, alleviated myocardial damage, and ultimately improved cardiac function. Thus, we provide insight into the prevention and treatment of diabetic myocardial injury caused by hypoglycemia to reduce adverse cardiovascular outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Cuihua Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Lishan Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Qintao Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Lu Lin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - XiaoHong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Liqin Qi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350000, China.
| |
Collapse
|
4
|
Baby SM, Zaidi F, Hunsberger GE, Sokal D, Gupta I, Conde SV, Chew D, Rall K, Coatney RW. Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs. Exp Physiol 2023; 108:280-295. [PMID: 36459572 PMCID: PMC10103873 DOI: 10.1113/ep090584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity in vivo and how do carotid body chemoreceptor stimulation-mediated cardiorespiratory responses in beagle dogs compare during euglycaemia and insulin-induced hypoglycaemia? What is the main finding and its importance? Intracarotid insulin administration leads to sustained increase in carotid body chemoreceptor activity and respiratory response with significant cardiovascular effects. Insulin-induced hypoglycaemia exacerbated NaCN-mediated carotid body chemoreceptor activity and respiratory response with enhanced cardiovascular reflex response. These findings suggest that insulin-induced hypoglycaemia augments the carotid body chemoreceptors to initiate the adaptive counter-regulatory responses to restore the normoglycaemic condition. ABSTRACT The carotid body chemoreceptors (CBC) play an important role in the adaptive counter-regulatory response to hypoglycaemia by evoking the CBC-mediated sympathetic neuronal system to restore normoglycaemia. Ex vivo studies have shown varied responses of insulin-induced hypoglycaemia on CBC function, and several in vivo studies have indirectly established the role of CBCs in restoring normoglycaemia in both animals and humans. However, a direct effect of insulin and/or insulin-induced hypoglycaemia on CBC activity is not established in animal models. Therefore, the aim of this study was to evaluate in vivo effects of insulin and insulin-induced hypoglycaemia on CBC activity and cardiorespiration in a preclinical large animal model. The carotid sinus nerve (CSN) activity and cardiorespiratory responses to sodium cyanide (NaCN; 25 µg/kg) were compared before (euglycaemic) and after (hypoglycaemic) intracarotid administration of insulin (12.5-100 µU/dogs) in beagle dogs. Insulin administration increased CSN activity and minute ventilation (V ̇ $\dot V$ E ) with significant (P < 0.0001) effects on heart rate and blood pressure. Insulin-mediated effects on CSN and cardiorespiration were sustained and the change inV ̇ $\dot V$ E was driven by tidal volume only. Insulin significantly (P < 0.0001) lowered blood glucose level. NaCN-mediated CSN activity andV ̇ $\dot V$ E were significantly (P < 0.0001) augmented during insulin-induced hypoglycaemia. The augmentedV ̇ $\dot V$ E was primarily driven by respiratory frequency and partially by tidal volume. The cardiovascular reflex response mediated through CBC stimulation was significantly (P < 0.0001) exacerbated during insulin-induced hypoglycaemia. Collectively, these results demonstrate direct effects of insulin and insulin-induced hypoglycaemia on CBC chemosensitivity to potentiate CBC-mediated neuroregulatory pathways to initiate adaptive neuroendocrine and cardiorespiratory counter-regulatory responses to restore normoglycaemia.
Collapse
Affiliation(s)
- Santhosh M. Baby
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Faisal Zaidi
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | | | - David Sokal
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Isha Gupta
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Silvia V. Conde
- NOVA Medical SchoolFaculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Daniel Chew
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Kristen Rall
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Robert W. Coatney
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| |
Collapse
|
5
|
Ali AAG, Niinuma SA, Moin ASM, Atkin SL, Butler AE. The Role of Platelets in Hypoglycemia-Induced Cardiovascular Disease: A Review of the Literature. Biomolecules 2023; 13:241. [PMID: 36830610 PMCID: PMC9953659 DOI: 10.3390/biom13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally as well as the leading cause of mortality and morbidity in type 2 diabetes (T2D) patients. Results from large interventional studies have suggested hyperglycemia and poor glycemic control to be largely responsible for the development of CVDs. However, the association between hypoglycemia and cardiovascular events is also a key pathophysiological factor in the development of CVDs. Hypoglycemia is especially prevalent in T2D patients treated with oral sulfonylurea agents or exogenous insulin, increasing the susceptibility of this population to cardiovascular events. The adverse cardiovascular risk of hypoglycemia can persist even after the blood glucose levels have been normalized. Hypoglycemia may lead to vascular disease through mechanisms such as enhanced coagulation, oxidative stress, vascular inflammation, endothelial dysfunction, and platelet activation. In the following review, we summarize the evidence for the role of hypoglycemia in platelet activation and the subsequent effects this may have on the development of CVD. In addition, we review current evidence for the effectiveness of therapies in reducing the risk of CVDs.
Collapse
Affiliation(s)
- Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
6
|
Recurrent Hypoglycemia Impaired Vascular Function in Advanced T2DM Rats by Inducing Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7812407. [PMID: 35915611 PMCID: PMC9338872 DOI: 10.1155/2022/7812407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Background Hypoglycemia is a dangerous side effect of intensive glucose control in diabetes. Even though it leads to adverse cardiovascular events, the effects of hypoglycemia on vascular biology in diabetes have not been adequately studied. Methods Aged Sprague-Dawley rats were fed a high-fat diet and given streptozotocin to induce type 2 diabetes mellitus (T2DM). Acute and recurrent hypoglycemia were then induced by glucose via insulin administration. Vascular function, oxidative stress, and pyroptosis levels in aortic tissue were assessed by physiological and biochemical methods. Results Hypoglycemia was associated with a marked decrease in vascular function, elevated oxidative stress, and elevated pyroptosis levels in the thoracic aorta. The changes in oxidative stress and pyroptosis were greater in rats with recurrent hypoglycemia than in those with acute hypoglycemia. Conclusions Hypoglycemia impaired vascular function in aged rats with T2DM by inducing pyroptosis. The extent of injury increased with the duration of blood glucose fluctuation.
Collapse
|