1
|
Padde JR, Zhou Y, Chen Y, Zhu Y, Yang Y, Hou M, Chen L, Xu Z, Zhang D, Chen L, Ji M. Adaptation and carry over effects of extreme sporadic heat stress in Culex mosquitoes. Acta Trop 2024; 260:107417. [PMID: 39383926 DOI: 10.1016/j.actatropica.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
Mosquitoes, as temperature-sensitive ectothermic vectors, exhibit temperature-dependence. This study investigates Culex pipiens pallens (Cx. pallens) responses to abrupt temperature increases and their implications on mosquito physiology. First instar larvae (24hr post hatching) and newly enclosed adults (24hr post emergence) were separately exposed to heat shock regimes of 33 °C, 37 °C, and 42 °C for 3 days alongside a control temperature of 27 °C. Results showed that mortality was triggered at 42 °C within a day. Adult male mosquitoes were less tolerant to all temperatures than larvae and adult females (p < 0.05). Exposing larvae to constant temperatures for 3 days significantly decreased larvae's development time, growth rate and adult emergence (p < 0.05). Reproductive fitness was significantly reduced (p < 0.05) in males emerging from larvae exposed to 37 °C. Life table parameters showed significant increased mortality rate, kill power and decreased life expectancy at the embryonic stage (p < 0.05). Furthermore, heatwaves deactivated the Transient receptor protein ankyrin 1 at 37 °C (p < 0.05) in larvae but not adults. Calmodium, Heat shock protein 90, and small heat shock protein expression were significantly decreased in larvae at 37 °C (p < 0.05) as compared to larvae raised at 33 °C and 27 °C. In conclusion, we classified the heat waves into three categories: adaptable (33 °C), critical (37 °C), and fatal (42 °C). Prolonged exposure of Culex pallens larvae to extreme heat affects the male reproductive output. These findings may serve as an important reference for forecasting vector and pest dynamics and used to tailor mosquito prevention and control measures.
Collapse
Affiliation(s)
- John Roberts Padde
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Department of Microbiology, Faculty of Health Sciences, Muni University, Arua, Uganda
| | - Yinghui Zhou
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yunxuan Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yuxiao Zhu
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yuxuan Yang
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Min Hou
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Donghui Zhang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Teaching Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - MinJun Ji
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Yadav M, Dahiya N, Sehrawat N. Mosquito gene targeted RNAi studies for vector control. Funct Integr Genomics 2023; 23:180. [PMID: 37227504 PMCID: PMC10211311 DOI: 10.1007/s10142-023-01072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
3
|
Kumari S, De TD, Chauhan C, Rani J, Tevatiya S, Sharma P, Pande V, Dixit R. Salivary AsHPX12 influences pre-blood meal associated behavioral properties in Anopheles stephensi. J Vector Borne Dis 2022; 59:206-215. [PMID: 36511036 DOI: 10.4103/0972-9062.328814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & OBJECTIVES A successful blood meal acquisition process by an adult female mosquito is accomplished through salivary glands, which releases a cocktail of proteins to counteract the vertebrate host's immune homeostasis. Here, we characterize a salivary-specific Heme peroxidase family member HPX12, originally identified from Plasmodium vivax infected salivary RNAseq data of the mosquito Anopheles stephensi. METHODS To demonstrate we utilized a comprehensive in silico and functional genomics approach. RESULTS Our dsRNA-mediated silencing experiments demonstrate that salivary AsHPX12 may regulate pre-blood meal-associated behavioral properties such as probing time, probing propensity, and host attraction. Altered expression of the salivary secretory and antennal proteins expression may have accounted for salivary homeostasis disruption resulting in the unusual fast release of salivary cocktail proteins and delayed acquisition of blood meal in the AsHPX12 knockdown mosquitoes. We also observed a significant parallel transcriptional modulation in response to blood feeding and P. vivax infection. INTERPRETATION & CONCLUSION With this work, we establish a possible functional correlation of AsHPX12 role in the maintenance of salivary physiological-homeostasis, and Plasmodium sporozoites survival/transmission, though the mechanism is yet to unravel.
Collapse
Affiliation(s)
- Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
4
|
Agudelo J, Toro M, Ramírez-Sánchez LF, Barrientos LM, Alfonso-Parra C, Avila FW. Putative Degradation of Non-Stored Sperm in the Female Reproductive Tract of the Dengue Vector Mosquito Aedes aegypti. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.816556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In insect vectors of disease, male and female molecules that mediate reproductive processes are promising targets to suppress fertility of these populations. One process, the storage of sperm in the female reproductive tract, is essential for optimal fertility in all organisms examined to date. In the dengue vector mosquito Aedes aegypti, female sperm storage has not been fully characterized, a requirement to identify sex-specific molecules that mediate this process. Aedes aegypti males deposit the ejaculate into the bursa of the female reproductive tract, and sperm enter the spermathecae—the long-term storage sites—quickly after insemination. However, the proportion of sperm received during mating that are stored in the spermathecae is unclear, and the fate of non-stored sperm unknown. We quantified sperm storage in two Ae. aegypti strains, mated in all combinations, and in two contexts (mass mated and when mating was observed) at 1-, 3- and 5-days post-mating. Sperm quantity in the spermathecae was similar at all timepoints; most females stored ~400 sperm on average. Sperm that did not enter the spermathecae remained in the bursa, where they declined in number and became more fragile to mechanical manipulation at each timepoint. Further, sperm viability in the bursa fell from 91.6% shortly after mating to 12.2% 24 h later. One day after insemination, ~50% of sperm detected in the female reproductive tract was stored in the spermathecae. When we quantified sperm storage in females mated to males that transferred reduced ejaculate quantities (but still able to induce optimal fertility in their mates), sperm detected in the spermathecae similarly declined; females stored ~50% of the sperm received even as sperm quantities transferred at mating declined. Our results suggest that sperm storage in Ae. aegypti females is influenced by ejaculate volume, and that sperm that do not enter the spermathecae remain in the bursa, where they appear to degrade. The consistent presence of sperm in the bursa, even when males transferred low sperm quantities, suggests that the putative degradation of bursa sperm may play a role in Ae. aegypti female fertility, potentially identifying a novel process in this important vector species.
Collapse
|