1
|
Davidova S, Milushev V, Satchanska G. The Mechanisms of Cadmium Toxicity in Living Organisms. TOXICS 2024; 12:875. [PMID: 39771090 PMCID: PMC11679562 DOI: 10.3390/toxics12120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) is a toxic metal primarily found as a by-product of zinc production. Cd was a proven carcinogen, and exposure to this metal has been linked to various adverse health effects, which were first reported in the mid-19th century and thoroughly investigated by the 20th century. The toxicokinetics and dynamics of Cd reveal its propensity for long biological retention and predominant storage in soft tissues. Until the 1950s, Cd pollution was caused by industrial activities, whereas nowadays, the main source is phosphate fertilizers, which strongly contaminate soil and water and affect human health and ecosystems. Cd enters the human body mainly through ingestion and inhalation, with food and tobacco smoke being the primary sources. It accumulates in various organs, particularly the kidney and liver, and is known to cause severe health problems, including renal dysfunction, bone diseases, cardiovascular problems, and many others. On a cellular level, Cd disrupts numerous biological processes, inducing oxidative stress generation and DNA damage. This comprehensive review explores Cd pollution, accumulation, distribution, and biological impacts on bacteria, fungi, edible mushrooms, plants, animals, and humans on a molecular level. Molecular aspects of carcinogenesis, apoptosis, autophagy, specific gene expression, stress protein synthesis, and ROS formation caused by Cd were discussed as well. This paper also summarizes how Cd is removed from contaminated environments and the human body.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| | - Viktor Milushev
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| | - Galina Satchanska
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| |
Collapse
|
2
|
Dziok T, Bury M, Adamczak J, Palka J, Borovec K. Utilization of used textiles for solid recovered fuel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28835-28845. [PMID: 38592624 DOI: 10.1007/s11356-024-33195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
One of the current important issues is the management of used textiles. One method is recycling, but the processes are characterized by a high environmental burden and the products obtained are of lower quality. Used textiles can be successfully used to produce SRF (solid recovered fuels). This type of fuel is standardized by ISO 21640:2021. In the paper, an analysis of used textiles made from fibers of different origins was performed. These were acrylic, cotton, linen, polyester, wool, and viscose. A proximate and ultimate analysis of the investigated samples was performed, including mercury and chlorine content. The alternative fuel produced from used textiles will be characterized by acceptable parameters for consumers: a lower heating value at 20 MJ/kg (class 1-3 SRF), mercury content below 0.9 µg Hg/MJ (class 1 SRF), and a chlorine content below 0.2% (class 1 SRF). However, the very high sulfur content in wool (3.0-3.6%) and the high nitrogen content in acrylic may limit its use for power generation. The use of alternative fuel derived from used textiles may allow 3% of the coal consumed to be substituted in 2030. The reduction in carbon dioxide emissions from the substitution of coal with an alternative fuel derived from used textiles will depend on their composition. For natural and man-made cellulosic fibers, the emission factor can be assumed as for plant biomass, making their use for SRF production preferable. For synthetic fibers, the emission factor was estimated at the level of 102 and 82 gCO2/MJ for polyester and acrylic, respectively.
Collapse
Affiliation(s)
- Tadeusz Dziok
- Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Marcelina Bury
- Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Julia Adamczak
- Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Justyna Palka
- Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Karel Borovec
- Centre for Energy and Environmental Technologies, Energy Research Centre, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00, Ostrava, Czech Republic
| |
Collapse
|
3
|
Astuti RDP, Maria R, Nurohman H, Shoedarto RM, Rusydi AF, Marganingrum D, Damayanti R, Mulyono A, Rahayudin Y, Dida EN, Yuliyanti A. Potentially toxic elements contamination in the water resources: an integrated risk assessment approach in the upper Citarum watershed area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:77. [PMID: 38367034 DOI: 10.1007/s10653-023-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 02/19/2024]
Abstract
The Citarum watershed is West Java Province's most important water resource; hence, harmful compounds should be monitored regularly. This study assessed pollution levels along with ecological and health risks from Cd, Pb, Mn, Fe, Cu, Cr, and Hg contamination in river water, sediment, groundwater, and soil in Citarum's upper watershed. In river water, the average amounts of Cd, Pb, Mn, Fe, Cu, Cr, and Hg were 0.002, 0.05, 0.092, 0.649, 0.022, 0.001, and 0.421 mg/L. In sediment, they were 7.4, 1175.1, 32,289.9, 37.3, 3.9, and 0.015 mg/kg. The mean concentrations of Cd, Pb, Mn, Fe, Cu, Cr, and Hg in groundwater were 0.004, 0.046, 0.567, 0.366, 0.019, 0.001, and 0.177 mg/L, and in soil, BDL, 10.2, 744.6, 50,094.1, 45.6, 5.9, and 0.015 mg/kg. The river water and groundwater were highly polluted by PTEs, with HPI values of 14,733 and 933, respectively. While PTEs pollution levels and risk in sediment and soil were low based on I-geo, CF, PLI, and M-ERM-Q values, PTEs contamination in river water may cause adverse impacts on aquatic living organisms (HQ > 1). The population doing recreational activities in river ecosystems was still safe from non-carcinogenic and carcinogenic impacts due to PTEs exposure from river water and sediment (THI < 1 and TCR value < 1E-04), while the population in the upper Citarum River was not safe from the carcinogenic risk due to PTE exposure from groundwater and soil (TCR > 1E-04). The sensitivity analysis showed that Cd concentration in groundwater is the most influential factor in cancer risk, with a total contribution of 99.9%. Therefore, a reduction in Cd concentration in groundwater is important to reduce cancer risk in the population.
Collapse
Affiliation(s)
- Ratna Dwi Puji Astuti
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia.
- Faculty of Public Health, Universitas Airlangga, Surabaya, 60155, Indonesia.
| | - Rizka Maria
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia.
| | - Heri Nurohman
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | | | - Anna Fadliah Rusydi
- Research Center for Limnology and Water Resources, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Dyah Marganingrum
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Retno Damayanti
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Asep Mulyono
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Yudi Rahayudin
- Polytechnic of Energy and Mining, Ministry of Energy and Mineral Resources, Bandung, 40211, Indonesia
| | - Eki Naidania Dida
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Anita Yuliyanti
- Research Center for Geological Resources, National Research and Innovation Agency, Bandung, 40135, Indonesia
| |
Collapse
|