1
|
Fotinós J, Barberis L, Condat CA. Effects of a differentiating therapy on cancer-stem-cell-driven tumors. J Theor Biol 2023; 572:111563. [PMID: 37391126 DOI: 10.1016/j.jtbi.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
The growth of many solid tumors has been found to be driven by chemo- and radiotherapy-resistant cancer stem cells (CSCs). A suitable therapeutic avenue in these cases may involve the use of a differentiating agent (DA) to force the differentiation of the CSCs and of conventional therapies to eliminate the remaining differentiated cancer cells (DCCs). To describe the effects of a DA that reprograms CSCs into DCCs, we adapt a differential equation model developed to investigate tumorspheres, which are assumed to consist of jointly evolving CSC and DCC populations. We analyze the mathematical properties of the model, finding the equilibria and their stability. We also present numerical solutions and phase diagrams to describe the system evolution and the therapy effects, denoting the DA strength by a parameter adif. To obtain realistic predictions, we choose the other model parameters to be those determined previously from fits to various experimental datasets. These datasets characterize the progression of the tumor under various culture conditions. Typically, for small values of adif the tumor evolves towards a final state that contains a CSC fraction, but a strong therapy leads to the suppression of this phenotype. Nonetheless, different external conditions lead to very diverse behaviors. For microchamber-grown tumorspheres, there is a threshold in therapy strength below which both subpopulations survive, while high values of adif lead to the complete elimination of the CSC phenotype. For tumorspheres grown on hard and soft agar and in the presence of growth factors, the model predicts a threshold not only in the therapy strength, but also in its starting time, an early beginning being potentially crucial. In summary, our model shows how the effects of a DA depend critically not only on the dosage and timing of the drug application, but also on the tumor nature and its environment.
Collapse
Affiliation(s)
- J Fotinós
- Instituto de Física Enrique Gaviola, CONICET, 5000, Córdoba, Argentina; FaMAF, Universidad Nacional de Córdoba, Bvd. Medina Allende s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| | - L Barberis
- Instituto de Física Enrique Gaviola, CONICET, 5000, Córdoba, Argentina; FaMAF, Universidad Nacional de Córdoba, Bvd. Medina Allende s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - C A Condat
- Instituto de Física Enrique Gaviola, CONICET, 5000, Córdoba, Argentina; FaMAF, Universidad Nacional de Córdoba, Bvd. Medina Allende s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| |
Collapse
|
2
|
Ponsiglione AM, Montefusco F, Donisi L, Tedesco A, Cosentino C, Merola A, Romano M, Amato F. A General Approach for the Modelling of Negative Feedback Physiological Control Systems. Bioengineering (Basel) 2023; 10:835. [PMID: 37508862 PMCID: PMC10376068 DOI: 10.3390/bioengineering10070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mathematical models can improve the understanding of physiological systems behaviour, which is a fundamental topic in the bioengineering field. Having a reliable model enables researchers to carry out in silico experiments, which require less time and resources compared to their in vivo and in vitro counterparts. This work's objective is to capture the characteristics that a nonlinear dynamical mathematical model should exhibit, in order to describe physiological control systems at different scales. The similarities among various negative feedback physiological systems have been investigated and a unique general framework to describe them has been proposed. Within such a framework, both the existence and stability of equilibrium points are investigated. The model here introduced is based on a closed-loop topology, on which the homeostatic process is based. Finally, to validate the model, three paradigmatic examples of physiological control systems are illustrated and discussed: the ultrasensitivity mechanism for achieving homeostasis in biomolecular circuits, the blood glucose regulation, and the neuromuscular reflex arc (also referred to as muscle stretch reflex). The results show that, by a suitable choice of the modelling functions, the dynamic evolution of the systems under study can be described through the proposed general nonlinear model. Furthermore, the analysis of the equilibrium points and dynamics of the above-mentioned systems are consistent with the literature.
Collapse
Affiliation(s)
- Alfonso Maria Ponsiglione
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Francesco Montefusco
- Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie, Università degli Studi di Napoli Parthenope, 80035 Nola, Italy
| | - Leandro Donisi
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli studi della Campania "Luigi Vanvitelli", P.zza L. Miraglia 2, 80138 Napoli, Italy
| | - Annarita Tedesco
- Dipartimento di Ingegneria per l'Innovazione, Universitá del Salento, 73100 Lecce, Italy
| | - Carlo Cosentino
- School of Computer and Biomedical Engineering, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Græcia di Catanzaro, Campus di Germaneto "Salvatore Venuta", 88100 Catanzaro, Italy
| | - Alessio Merola
- School of Computer and Biomedical Engineering, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Græcia di Catanzaro, Campus di Germaneto "Salvatore Venuta", 88100 Catanzaro, Italy
| | - Maria Romano
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Francesco Amato
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
3
|
Hernández JA, Chifflet S, Justet C, Torriglia A. A mathematical model of wound healing in bovine corneal endothelium. J Theor Biol 2023; 559:111374. [PMID: 36460056 DOI: 10.1016/j.jtbi.2022.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
We developed a mathematical model to describe healing processes in bovine corneal endothelial (BCE) cells in culture, triggered by mechanical wounds with parallel edges. Previous findings from our laboratory show that, in these cases, BCE monolayers exhibit an approximately constant healing velocity. Also, that caspase-dependent apoptosis occurs, with the fraction of apoptotic cells increasing with the distance traveled by the healing edge. In addition, in this study we report the novel findings that, for wound scratch assays performed preserving the basal extracellular matrix: i) the healing cells increase their en face surface area in a characteristic fashion, and ii) the average length of the segments of the cell columns actively participating in the healing process increases linearly with time. These latter observations preclude the utilization of standard traveling wave formalisms to model wound healing in BCE cells. Instead, we developed and studied a simple phenomenological model based on a plausible formula for the spreading dynamics of the individual healing cells, that incorporates original evidence about the process in BCE cells. The model can be simulated to: i) obtain an approximately constant healing velocity; ii) reproduce the profile of the healing cell areas, and iii) obtain approximately linear time dependences of the mean cell area and average length of the front active segments per column. In view of its accuracy to account for the experimental observations, the model can also be acceptably employed to quantify the appearance of apoptotic cells during BCE wound healing. The strategy utilized here could offer a novel formal framework to represent modifications undergone by some epithelial cell lines during wound healing.
Collapse
Affiliation(s)
- Julio A Hernández
- Sección Biofísica y Biología de Sistemas, Facultad de Ciencias, Universidad de la República, Iguá s/n esq. Mataojo, 11400 Montevideo, Uruguay.
| | - Silvia Chifflet
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay
| | - Cristian Justet
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France
| |
Collapse
|
4
|
Fischer MM, Blüthgen N. On tumoural growth and treatment under cellular dedifferentiation. J Theor Biol 2023; 557:111327. [PMID: 36341757 DOI: 10.1016/j.jtbi.2022.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Differentiated cancer cells may regain stem cell characteristics; however, the effects of such a cellular dedifferentiation on tumoural growth and treatment are currently understudied. Thus, we here extend a mathematical model of cancer stem cell (CSC) driven tumour growth to also include dedifferentiation. We show that dedifferentiation increases the likelihood of tumorigenesis and the speed of tumoural growth, both modulated by the proliferative potential of the non-stem cancer cells (NSCCs). We demonstrate that dedifferentiation also may lead to treatment evasion, especially when a treatment solely targets CSCs. Conversely, targeting both CSCs and NSCCs in parallel is shown to be more robust to dedifferentiation. Despite dedifferentiation, perturbing CSC-related parameters continues to exert the largest relative effect on tumoural growth; however, we show the existence of synergies between specific CSC- and NSCC-directed treatments which cause superadditive reductions of tumoural growth. Overall, our study demonstrates various effects of dedifferentiation on growth and treatment of tumoural lesions, and we anticipate our results to be helpful in guiding future molecular and clinical research on limiting tumoural growth in vivo.
Collapse
Affiliation(s)
- Matthias M Fischer
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| |
Collapse
|
5
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|