1
|
Dual SA, Cowger J, Roche E, Nayak A. The Future of Durable Mechanical Circulatory Support: Emerging Technological Innovations and Considerations to Enable Evolution of the Field. J Card Fail 2024; 30:596-609. [PMID: 38431185 DOI: 10.1016/j.cardfail.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
The field of durable mechanical circulatory support (MCS) has undergone an incredible evolution over the past few decades, resulting in significant improvements in longevity and quality of life for patients with advanced heart failure. Despite these successes, substantial opportunities for further improvements remain, including in pump design and ancillary technology, perioperative and postoperative management, and the overall patient experience. Ideally, durable MCS devices would be fully implantable, automatically controlled, and minimize the need for anticoagulation. Reliable and long-term total artificial hearts for biventricular support would be available; and surgical, perioperative, and postoperative management would be informed by the individual patient phenotype along with computational simulations. In this review, we summarize emerging technological innovations in these areas, focusing primarily on innovations in late preclinical or early clinical phases of study. We highlight important considerations that the MCS community of clinicians, engineers, industry partners, and venture capital investors should consider to sustain the evolution of the field.
Collapse
Affiliation(s)
- Seraina A Dual
- KTH Royal Institute of Technology, Department of Biomedical Engineering and Health Systems, Stockholm, Sweden
| | | | - Ellen Roche
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aditi Nayak
- Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
2
|
He X, Bender M, Gross C, Narayanaswamy K, Laufer G, Jakubek S, Bonderman D, Roehrich M, Karner B, Zimpfer D, Granegger M. Left Atrial Decompression With the HeartMate3 in Heart Failure With Preserved Ejection Fraction: Virtual Fitting and Hemodynamic Analysis. ASAIO J 2024; 70:107-115. [PMID: 37831817 DOI: 10.1097/mat.0000000000002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Effective treatment of heart failure with preserved ejection fraction (HFpEF) remains an unmet medical need. Although left atrial decompression using mechanical circulatory support devices was previously suggested, the heterogeneous HFpEF population and the lack of tailored devices have prevented the translation into clinical practice. This study aimed to evaluate the feasibility of left atrial decompression in HFpEF patients with a HeartMate 3 (HM3, Abbott Inc, Chicago, USA) in silico and in vitro . Anatomic compatibility of the HM3 pump was assessed by virtual device implantation into the left atrium through the left atrial appendage (LAA) and left atrial posterior wall (LAPW) of 10 HFpEF patients. Further, the efficacy of left atrial decompression was investigated experimentally in a hybrid mock loop, replicating the hemodynamics of an HFpEF phenotype at rest and exercise conditions. Virtual implantation without substantial intersection with surrounding tissues was accomplished through the LAA in 90% and 100% through the LAPW. Hemodynamic analysis in resting conditions demonstrated normalization of left atrial pressures without backflow at a pump speed of around 5400 rpm, whereas a range of 6400-7400 rpm was required during exercise. Therefore, left atrial decompression with the HM3 may be feasible in terms of anatomic compatibility and hemodynamic efficacy.
Collapse
Affiliation(s)
- Xiangyu He
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Bender
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Division of Control and Process Automation, Institute of Mechanics and Mechatronics, TU Wien, Vienna, Austria
| | - Christoph Gross
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Günther Laufer
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Jakubek
- Division of Control and Process Automation, Institute of Mechanics and Mechatronics, TU Wien, Vienna, Austria
| | | | - Michael Roehrich
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Karner
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Daniel Zimpfer
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marcus Granegger
- From the Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Rosalia L, Ozturk C, Wang SX, Quevedo-Moreno D, Saeed MY, Mauskapf A, Roche ET. Soft robotics-enabled large animal model of HFpEF hemodynamics for device testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550654. [PMID: 37547009 PMCID: PMC10402006 DOI: 10.1101/2023.07.26.550654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major challenge in cardiovascular medicine, accounting for approximately 50% of all cases of heart failure. Due to the lack of effective therapies for this condition, the mortality associated with HFpEF remains higher than that of most cancers. Despite the ongoing efforts, no medical device has yet received FDA approval. This is largely due to the lack of an in vivo model of the HFpEF hemodynamics, resulting in the inability to evaluate device effectiveness in vivo prior to clinical trials. Here, we describe the development of a highly tunable porcine model of HFpEF hemodynamics using implantable soft robotic sleeves, where controlled actuation of a left ventricular and an aortic sleeve can recapitulate changes in ventricular compliance and afterload associated with a broad spectrum of HFpEF hemodynamic phenotypes. We demonstrate the feasibility of the proposed model in preclinical testing by evaluating the hemodynamic response of the model post-implantation of an interatrial shunt device, which was found to be consistent with findings from in silico studies and clinical trials. This work addresses several of the limitations associated with previous models of HFpEF, such as their limited hemodynamic fidelity, elevated costs, lengthy development time, and low throughput. By showcasing exceptional versatility and tunability, the proposed platform has the potential to revolutionize the current approach for HFpEF device development and selection, with the goal of improving the quality of life for the 32 million people affected by HFpEF worldwide.
Collapse
|
4
|
Weissmann J, Benoliel YC, Yap CH, Marom G. A numerical study of a left ventricular expander for heart failure with preserved ejection fraction. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230142. [PMID: 37476520 PMCID: PMC10354470 DOI: 10.1098/rsos.230142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Increased cardiac stiffness hinders proper left ventricular (LV) expansion, resulting in decreased volume and diastolic dysfunction. LV expanders are spring-like devices designed to improve diastolic function by facilitating mechanical outward expansion. Implantations in animals and humans have shown promising results, yet further evaluation is needed to assess a range of functions and the risk of use. In this computational study, the effectiveness and potential use of a generic LV expander were assessed by using previously generated finite-element models of induced heart failure with preserved ejection fraction (HFpEF). Following implantation, the treated models were compared to the corresponding untreated and healthy pre-induction models. The influence of device orientation and its material properties was also examined. Our results demonstrated a reduction in LV pressure and a volumetric improvement. Computed LV stresses have shown no gross irregularities. The device contributed to stress elevation during diastole while having a minor effect during systole, supporting a basic safety profile. This is the first study to use numerical analysis to assess LV expanders' performance on different HFpEF phenotypes. Improvement in heart function was demonstrated in both subjects, suggesting its potential use in various HFpEF manifestations, yet customization and optimal deployment are essential to improve heart performance.
Collapse
Affiliation(s)
- Jonathan Weissmann
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Arduini M, Pham J, Marsden AL, Chen IY, Ennis DB, Dual SA. Framework for patient-specific simulation of hemodynamics in heart failure with counterpulsation support. Front Cardiovasc Med 2022; 9:895291. [PMID: 35979018 PMCID: PMC9376255 DOI: 10.3389/fcvm.2022.895291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite being responsible for half of heart failure-related hospitalizations, heart failure with preserved ejection fraction (HFpEF) has limited evidence-based treatment options. Currently, a substantial clinical issue is that the disease etiology is very heterogenous with no patient-specific treatment options. Modeling can provide a framework for evaluating alternative treatment strategies. Counterpulsation strategies have the capacity to improve left ventricular diastolic filling by reducing systolic blood pressure and augmenting the diastolic pressure that drives coronary perfusion. Here, we propose a framework for testing the effectiveness of a soft robotic extra-aortic counterpulsation strategy using a patient-specific closed-loop hemodynamic lumped parameter model of a patient with HFpEF. The soft robotic device prototype was characterized experimentally in a physiologically pressurized (50–150 mmHg) soft silicone vessel and modeled as a combination of a pressure source and a capacitance. The patient-specific model was created using open-source software and validated against hemodynamics obtained by imaging of a patient (male, 87 years, HR = 60 bpm) with HFpEF. The impact of actuation timing on the flows and pressures as well as systolic function was analyzed. Good agreement between the patient-specific model and patient data was achieved with relative errors below 5% in all categories except for the diastolic aortic root pressure and the end systolic volume. The most effective reduction in systolic pressure compared to baseline (147 vs. 141 mmHg) was achieved when actuating 350 ms before systole. In this case, flow splits were preserved, and cardiac output was increased (5.17 vs. 5.34 L/min), resulting in increased blood flow to the coronaries (0.15 vs. 0.16 L/min). Both arterial elastance (0.77 vs. 0.74 mmHg/mL) and stroke work (11.8 vs. 10.6 kJ) were decreased compared to baseline, however left atrial pressure increased (11.2 vs. 11.5 mmHg). A higher actuation pressure is associated with higher systolic pressure reduction and slightly higher coronary flow. The soft robotic device prototype achieves reduced systolic pressure, reduced stroke work, slightly increased coronary perfusion, but increased left atrial pressures in HFpEF patients. In future work, the framework could include additional physiological mechanisms, a larger patient cohort with HFpEF, and testing against clinically used devices.
Collapse
Affiliation(s)
- Mattia Arduini
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| | - Jonathan Pham
- Mechanical Engineering, Stanford University, Palo Alto, CA, United States
| | - Alison L. Marsden
- Department of Bioengineering, Stanford University, Palo Alto, CA, United States
- Department of Pediatrics, Stanford University, Palo Alto, CA, United States
| | - Ian Y. Chen
- Cardiovascular Institute, Stanford University, Palo Alto, CA, United States
- Division of Medicine (Cardiology), Veterans Affairs Health Care System, Palo Alto, CA, United States
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Palo Alto, CA, United States
- Cardiovascular Institute, Stanford University, Palo Alto, CA, United States
- Division of Radiology, Veterans Affairs Health Care System, Palo Alto, CA, United States
| | - Seraina A. Dual
- Department of Radiology, Stanford University, Palo Alto, CA, United States
- Cardiovascular Institute, Stanford University, Palo Alto, CA, United States
- *Correspondence: Seraina A. Dual
| |
Collapse
|