LI F, LUO Q. [Application advances of mass spectrometry imaging technology in environmental pollutants analysis and their toxicity research].
Se Pu 2024;
42:150-158. [PMID:
38374595 PMCID:
PMC10877477 DOI:
10.3724/sp.j.1123.2023.11005]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 02/21/2024] Open
Abstract
Environmental exposures have significant impacts on human health and can contribute to the occurrence and development of diseases. Pollutants can enter the body through ingestion, inhalation, dermal absorption, or mother-to-child transmission, and can metabolize and/or accumulate in different tissues and organs. These pollutants can recognize and interact with various biomolecules, including DNA, RNA, proteins, and metabolites, disrupting biological processes and leading to adverse effects in living organisms. Thus, it is crucial to analysis the exogenous pollutants in the body, identify potential biomarkers and investigate their toxic effects. Numerous studies have shown that the metabolism rate of environmental pollutants greatly differs in various tissues and organs, their accumulation is also heterogeneous and dynamically changing. Moreover, the synthesis and accumulation of endogenous metabolites exhibit precise spatial distributions in tissues and cells. Mapping the spatial distributions of both pollutants and endogenous metabolites can discover relevant exposure biomarkers and provide a better understanding of their toxic effects and molecular mechanisms. Mass spectrometry is currently the preferred method for the qualitative and quantitative analysis of various compounds, and has been extensively utilized in pollutant and metabolomics analyses. Mass spectrometry imaging (MSI) is an emerging technology for molecular imaging that combines the information obtained by mass spectrometry with the visualization of the two- and three-dimensional spatial distributions of various molecular species in thin sample sections. Unlike other molecular imaging techniques, MSI can perform the label-free and untargeted analysis of thousands of molecules, such as elements, metabolites, lipids, peptides, proteins, pollutants, and drugs, in a single experiment with high sensitivity and throughput. Different MSI technologies, such as matrix-assisted laser desorption ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging, and laser ablation inductively coupled plasma mass spectrometry imaging, have been introduced for the mapping of compounds and elements in biological, medical, and clinical research. MSI technologies have recently been utilized to characterize the spatial distribution of pollutants in the whole body and specific tissues of organisms, assess the toxic effects of pollutants at the molecular level, and identify exposure biomarkers. Such developments have brought new perspectives to investigate the toxicity of environmental pollutants. In this review, we provide an overview of the principles, characteristics, mass analyzers, and workflows of different MSI techniques and introduce their latest application advances in the analysis of environmental pollutants and their toxic effects.
Collapse