1
|
Xu J, Zhang Y, Zheng Y, Wang T, Zhang H, Wang K, Wang Y, Williams GR, Zhu LM. A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm. Carbohydr Polym 2025; 351:123120. [PMID: 39779027 DOI: 10.1016/j.carbpol.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus. In vitro and in vivo assays revelaed that the NPs were able to effectively induce the immunogenic ferroptosis of cancer cells. Under NIR irradiation, EpCAM-CS-co-PNVCL@IR780/IMQ cause cell death in tumors via photothermal therapy. Moreover, IMQ promotes the maturation of dendritic cells (DCs), which then activate cytotoxic T-lymphocytes (CTLs); these T-cells go on to provide immunotherapy of metastatic tumor cells. The metastatic tumor cells can be induced to undergo ferroptosis by the addition of arachidonic acid (AA), which interacts with interferon cytokines (IFN-γ) released from CTLs.
Collapse
Affiliation(s)
- Jianxiang Xu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
2
|
Umamaheswari C, S A. Phytochemical profiling and anticancer potential of Memecylon lushingtonii Gamble methanolic crude extracts. Nat Prod Res 2024:1-6. [PMID: 39034455 DOI: 10.1080/14786419.2024.2380010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
The present investigation examines the anticancer characteristics of phytochemicals derived from Memecylon lushingtonii Gamble (MLG) leaves, concentrating on their efficiency against breast cancer cell lines. Utilising column chromatography, we recovered four different fractions from the methanol extract of MLG leaves. The fourth fraction, rich in bioactive chemicals, displayed substantial cytotoxicity in MTT experiments against MCF-7 cells, indicating powerful anticancer potential. Further investigations revealed a varied array of phytochemicals, including phenols and flavonoids, recognised for their medicinal properties. This discovery emphasises the promise of MLG leaf extracts as a source of anticancer drugs and establishes the framework for further investigations into their mechanisms of action.
Collapse
Affiliation(s)
- C Umamaheswari
- Department of Biotechnology, VFSTR (Deemed to be University), Vadlamudi, Andhra Pradesh, India
- Biology Department, RGUKT-RK Valley Campus, Ground Floor, Idupulapaya, Vempalli, Andhra Pradesh, India
| | - Asha S
- Department of Biotechnology, VFSTR (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
3
|
Lima JA, Sorroche BP, Tostes K, Dias TC, de Carvalho Rodrigues N, Tansini A, da Silva Oliveira RJ, Arantes LMRB. Repurposing discarded leukodepletion filters as a source of mononuclear cells for advanced in vitro research. J Immunol Methods 2024; 530:113694. [PMID: 38797273 DOI: 10.1016/j.jim.2024.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In light of advancements in the field of immuno-oncology, the demand for obtaining mononuclear cells for in vitro assays has surged. However, obtaining these cells from healthy donors remains a challenging task due to difficulties in donor recruitment and the requirement for substantial blood volumes. Here, we present a protocol for isolating peripheral blood mononuclear cells (PBMCs) from leukodepletion filters used in whole blood and erythrocytes by apheresis donations at the Hemonucleus of the Barretos Cancer Hospital, Brazil. The method involves rinsing the leukodepletion filters and subsequent centrifugation using a Ficoll-Paque concentration gradient. The isolated PBMCs were analyzed by flow cytometry, which allowed the identification of various subpopulations, including CD4+ T lymphocytes (CD45+CD4+), CD8+ T lymphocytes (CD45+CD8+), B lymphocytes (CD45+CD20+CD19+), non-classical monocytes (CD45+CD64+CD14-), classical monocytes (CD45+CD64+CD14+), and granulocytes (CD45+CD15+CD14-). In our comparative analysis of filters, we observed a higher yield of PBMCs from whole blood filters than those obtained from erythrocytes through apheresis. Additionally, fresh samples exhibited superior viability when compared to cryopreserved ones. Given this, leukodepletion filters provide a practical and cost-effective means to isolate large quantities of pure PBMCs, making it a feasible source for obtaining mononuclear cells for in vitro experiments. SUMMARY: Here, we provide a detailed protocol for the isolation of mononuclear cells from leukodepletion filters, which are routinely discarded at the Barretos Cancer Hospital's Hemonucleus.
Collapse
Affiliation(s)
| | | | - Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | - Aline Tansini
- Molecular Diagnosis Laboratory, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Renato José da Silva Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, SP, Brazil
| | - Lidia Maria Rebolho Batista Arantes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Vilela - 1301/1302, Doutor Paulo Prata, 14784400 Barretos, SP, Brazil.
| |
Collapse
|
4
|
Thupakula S, Nimmala SSR, Dawood SM, Padiya R. Synergistic anti-diabetic effect of phloroglucinol and total procyanidin dimer isolated from Vitisvinifera methanolic seed extract potentiates via suppressing oxidative stress: in-vitro evaluation studies. 3 Biotech 2024; 14:76. [PMID: 38371900 PMCID: PMC10866825 DOI: 10.1007/s13205-024-03929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Diabetes is often associated with increased oxidative stress caused by an imbalance between detoxification and ROS production. Unfortunately, many commercial drugs available today for treating this disease have adverse side effects and ultimately fail to restore glucose homeostasis. Therefore, finding a dietary anti-diabetic remedy that is safe, effective, and economical is crucial. In this study, GC-MS analysis, subsequent HPLC-assisted fractionation, and SPE-based purification led to identifying and purifying of key components such as phloroglucinol and total procyanidin dimer (procyanidin dimer and procyanidin dimer gallate) from methanolic seed extract of Vitis vinifera. In-vitro anti-diabetic screening of various fractions derived from methanolic extract along with individual components and their combinations revealed the potential synergistic behaviour of phloroglucinol and total procyanidin dimer with the lowest IC50 of 48.21 ± 3.54 µg/mL for α-glucosidase and 63.06 ± 5.38 µg/mL for α-amylase inhibition which is found to be superior to the effect shown by the standard Epigallocatechin gallate. Later Glucose utilization studies demonstrated the concentration-dependent effect of Phloroglucinol and total procyanidin dimer, and that has raised the glucose uptake by approximately 36-57% in HepG2 cells and 35-58% in L6 myocytes over a concentration of 50-100 µg/mL. The superior anti-diabetic effect of Phloroglucinol and total procyanidin dimer was proved by the suppression of oxidative stress with an IC50 of 7.92 ± 0.36 µg/mL for DPPH scavenging and 16.87 ± 1.24 µg/mL for SOD scavenging which is competent with the standard ascorbic acid. According to this study, suppressing ROS levels by phloroglucinol and total procyanidin dimer would be the underlying mechanism for the synergistic anti-diabetic effect of this combination. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03929-4.
Collapse
Affiliation(s)
- Sreenu Thupakula
- Department of Biochemistry, University College of Science, Osmania University, Amberpet, Hyderabad, Telangana State 500007 India
| | - Shiva Shankar Reddy Nimmala
- Department of Biochemistry, University College of Science, Osmania University, Amberpet, Hyderabad, Telangana State 500007 India
| | - Shauq Mumtaz Dawood
- Department of Biochemistry, University College of Science, Osmania University, Amberpet, Hyderabad, Telangana State 500007 India
| | - Raju Padiya
- Department of Biochemistry, University College of Science, Osmania University, Amberpet, Hyderabad, Telangana State 500007 India
| |
Collapse
|
5
|
Chekuri S, Vyshnava SS, Somisetti SL, Cheniya SBK, Gandu C, Anupalli RR. Isolation and anticancer activity of quercetin from Acalypha indica L. against breast cancer cell lines MCF-7 and MDA-MB-231. 3 Biotech 2023; 13:289. [PMID: 37547624 PMCID: PMC10397153 DOI: 10.1007/s13205-023-03705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
In this study, the active components of the plant were carefully extracted and identified using three solvent systems. After extraction, we used solvent systems to further purify the main flavonoid chemical constituent. As a result of our analytical strategy, which included HPLC analysis, MS/MS spectroscopic analysis, and NMR data-based constructions, quercetin was determined to be the main chemical constituent. Our study suggests the potential therapeutic advantages of quercetin, a compound found in the leaves of Acalypha indica, for treating breast cancer cell lines MCF-7 and MDA-MB-231. Our comparison of Quercetin to the regularly prescribed medicine Doxorubicin shows that it has the capacity to inhibit MCF-7 and MDA-MB-231 cells. Measurements of apoptosis and cell cycle phase showed this to be the case. Furthermore, a ladder that formed as a result of cellular damage brought on by ROS provided further proof of the drug's impact on DNA integrity. Notably, pro-apoptotic proteins displayed increased apoptosis activity in cells treated with quercetin. Given that it is extracted from plants and has less adverse effects than other compounds, quercetin is a viable option for further clinical study. The objective is to fight breast cancer, one of the most prevalent diseases in the world and a main cause of death for women. Thus, our research makes a significant addition to the ongoing search for potent, plant-based breast cancer treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03705-w.
Collapse
Affiliation(s)
- Sudhakar Chekuri
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| | - Satyanarayana Swamy Vyshnava
- Department of Biotechnology, University College of Science, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
- Department of Microbiology, Keshav Memorial Institute of Commerce and Sciences, Narayanguda, Hyderabad, Telangana 500029 India
| | - Swarupa Lakshmi Somisetti
- Department of Microbiology, Government Medical College and General Hospital, Suryapet, Telangana 508213 India
| | - Sai Bindu Karamthote Cheniya
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| | - Chakradhar Gandu
- Bogomolets National Medical University, Taras Shevchenko Blvd 13, Kiev, 01601 Ukraine
| | - Roja Rani Anupalli
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| |
Collapse
|