1
|
Park JY, Park KM. Recent discovery of natural substances with cathepsin L-inhibitory activity for cancer metastasis suppression. Eur J Med Chem 2024; 277:116754. [PMID: 39128327 DOI: 10.1016/j.ejmech.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
2
|
Kwon YJ, Lee J, Seo EB, Lee J, Park J, Kim SK, Yu H, Ye SK, Chang PS. Cysteine protease I29 propeptide from Calotropis procera R. Br. As a potent cathepsin L inhibitor and its suppressive activity in breast cancer metastasis. Sci Rep 2024; 14:23218. [PMID: 39368988 PMCID: PMC11457494 DOI: 10.1038/s41598-024-73578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Breast cancer metastasis is associated with a poor prognosis and a high rate of mortality. Cathepsin L (CTSL) is a lysosomal cysteine protease that promotes tumor metastasis by degrading the extracellular matrix. Gene set enrichment analysis revealed that CTSL expression was higher in tumorous than in non-tumorous tissues of breast cancer patients and that high-level CTSL expression correlated positively with the epithelial-mesenchymal transition. Therefore, we hypothesized that inhibiting CTSL activity in tumor cells would prevent metastasis. In this study, we characterized the inhibitory activity of SnuCalCpI15, the I29 domain of a CTSL-like cysteine protease from Calotropis procera R. Br., and revealed that the propeptide stereoselectively inhibited CTSL in a reversible slow-binding manner, with an inhibitory constant (Ki) value of 1.38 ± 0.71 nM, indicating its potency as an exogenous inhibitor in anti-cancer therapy. SnuCalCpI15 was localized intracellularly in MDA-MB-231 breast cancer cells and suppressed tumor cell migration and invasion. These results demonstrate the potential of SnuCalCpI15 as a novel agent to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Juno Lee
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Juchan Lee
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Jaehyeon Park
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyunjong Yu
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| | - Pahn-Shick Chang
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Doijen J, Temmerman K, Van den Eynde C, Diels A, Van den Broeck N, Van Gool M, Heo I, Jaensch S, Zwaagstra M, Diosa Toro M, Chiu W, De Jonghe S, Leyssen P, Bojkova D, Ciesek S, Cinatl J, Verschueren L, Buyck C, Van Kuppeveld F, Neyts J, Van Loock M, Van Damme E. Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2. Microorganisms 2023; 11:717. [PMID: 36985290 PMCID: PMC10055926 DOI: 10.3390/microorganisms11030717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.
Collapse
Affiliation(s)
- Jordi Doijen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Temmerman
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Annick Diels
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | - Inha Heo
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steffen Jaensch
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Mayra Diosa Toro
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Winston Chiu
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Denisa Bojkova
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Lore Verschueren
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Christophe Buyck
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frank Van Kuppeveld
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Marnix Van Loock
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ellen Van Damme
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
4
|
Ibrahim KA, Kashef MT, Elkhamissy TR, Ramadan MA, Helmy OM. Aspartate α-decarboxylase a new therapeutic target in the fight against Helicobacter pylori infection. Front Microbiol 2022; 13:1019666. [DOI: 10.3389/fmicb.2022.1019666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Effective eradication therapy for Helicobacter pylori is a worldwide demand. Aspartate α-decarboxylase (ADC) was reported as a drug target in H. pylori, in an in silico study, with malonic acid (MA) as its inhibitor. We evaluated eradicating H. pylori infection through ADC inhibition and the possibility of resistance development. MA binding to ADC was modeled via molecular docking. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of MA were determined against H. pylori ATCC 43504, and a clinical H. pylori isolate. To confirm selective ADC inhibition, we redetermined the MIC in the presence of products of the inhibited enzymatic pathway: β-alanine and pantothenate. HPLC was used to assay the enzymatic activity of H. pylori 6x-his tagged ADC in the presence of different MA concentrations. H. pylori strains were serially exposed to MA for 14 passages, and the MICs were determined. Cytotoxicity in different cell lines was tested. The efficiency of ADC inhibition in treating H. pylori infections was evaluated using a Sprague–Dawley (SD) rat infection model. MA spectrum of activity was determined in different pathogens. MA binds to H. pylori ADC active site with a good docking score. The MIC of MA against H. pylori ranged from 0.5 to 0.75 mg/mL with MBC of 1.5 mg/mL. Increasing β-alanine and pantothenate concentrations proportionally increased MA MIC. The 6x-his tagged ADC activity decreased by increasing MA concentration. No resistance to ADC inhibition was recorded after 14 passages; MA lacked cytotoxicity in all tested cell lines. ADC inhibition effectively eradicated H. pylori infection in SD rats. MA had MIC between 0.625 to 1.25 mg/mL against the tested bacterial pathogens. In conclusion, ADC is a promising target for effectively eradicating H. pylori infection that is not affected by resistance development, besides being of broad-spectrum presence in different pathogens. MA provides a lead molecule for the development of an anti-helicobacter ADC inhibitor. This provides hope for saving the lives of those at high risk of infection with the carcinogenic H. pylori.
Collapse
|
5
|
Mohammed Ali H. In-silico investigation of a novel inhibitors against the antibiotic-resistant Neisseria gonorrhoeae bacteria. Saudi J Biol Sci 2022; 29:103424. [PMID: 36091725 PMCID: PMC9460163 DOI: 10.1016/j.sjbs.2022.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotics are drugs that are used to treat or prevent bacterial infections. They work by either killing or stopping bacteria from spreading. Nevertheless, it appeared in the last decade, Antibiotic-resistant bacteria are bacteria resistant to antibiotics and cannot be controlled or killed by them. In the presence of an antibiotic, they can live and even reproduce. The Neisseria gonorrhoeae bacteria is appearing to be a multidrug-resistant pathogen. Many factors contribute to antibiotic resistance, including unfettered access to antimicrobials, incorrect drug selection, misuse, and low-quality antibiotics. Here, we investigated in-silico docking screening and analysis for ten natural marine fungus extracted compounds. The resulted data were examined for the best binding affinity, toxicity, and chemical interactions. The most superior compound was elipyrone A with six hydrogen bonds, −8.5 of binding affinity, and preferable results in the SWISS-ADME examination. It is well known that “Declining corporate investment and a lack of innovation in the development of new antibiotics are weakening efforts to battle drug-resistant illnesses,” according to the World Health Organization (WHO). So, we extended our effort to predict a new natural compound to overcome the resistance of this bacteria.
Collapse
|