1
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024:10.1038/s41577-024-01064-y. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Downie LE, Zhang X, Wu M, Karunaratne S, Loi JK, Senthil K, Arshad S, Bertram K, Cunningham AL, Carnt N, Mueller SN, Chinnery HR. Redefining the human corneal immune compartment using dynamic intravital imaging. Proc Natl Acad Sci U S A 2023; 120:e2217795120. [PMID: 37487076 PMCID: PMC10400993 DOI: 10.1073/pnas.2217795120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.
Collapse
Affiliation(s)
- Laura E. Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Xinyuan Zhang
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Senuri Karunaratne
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Kirthana Senthil
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Sana Arshad
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Kirstie Bertram
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Nicole Carnt
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW2052, Australia
- Institute of Ophthalmology, University College London, LondonEC1V 9EL, United Kingdom
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Holly R. Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| |
Collapse
|
3
|
Tong L, Lim EWL, Yeo SWJ, Hou A, Linn YC, Ho A, Than H, Quek JKS, Hwang WYK, Lim FLWI, Lim L. Conjunctival T Cell Profile in Allogeneic Hematopoietic Stem Cell Transplant Patients after Instilling Topical Cyclosporine-A 0.1% Cationic Emulsion. Ophthalmol Ther 2023; 12:1547-1567. [PMID: 36856978 PMCID: PMC10164203 DOI: 10.1007/s40123-023-00686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION To profile conjunctival T cell populations in allogeneic hematopoietic stem cell transplant (HSCT) patients after instillation of daily topical cyclosporine-A (CsA) 0.1% cationic emulsion (Ikervis), and to evaluate patients' tolerance to these eye drops. METHODS Nineteen participants were prescribed Ikervis prophylaxis once daily to both eyes from 3-5 weeks pre-HSCT to 12 months post-HSCT. The outcome measure was conjunctival T cell proportions from flow cytometry after impression cytology. Covariates included visual acuity, intraocular pressure, slit lamp and fundal examination, dry eye (SPEED) and quality of life questionnaires, non-invasive keratograph tear break-up time (NIKBUT), conjunctival redness, meibography, lipid thickness, Schirmer test, tear cytokines, fluorescein staining, tear osmolarity, and meibomian gland expressibility. RESULTS The conjunctival T cell analysis showed either stable or decreased proportions of conjunctival CD4 T cells at the last visit from baseline in compliant patients. CD4 proportions were increased in non-compliant patients and in the single patient who developed ocular graft-versus-host disease (GVHD). All patients were tolerant to Ikervis but 6/19 were not compliant. In the majority of patients, vision did not affect activities of daily living. Pre- and post-HSCT up to the last study visit, there was no statistically significant change in clinical covariates. Only one participant developed ocular GVHD at 9 months post-HSCT. CONCLUSION Superficial conjunctival T cell profile reflects compliance to daily topical Ikervis eye drops and clinical ocular surface parameters in allogenic HSCT patients. Tolerance is comparable to other formulations of topical CsA in the first 12 months. CLINICALTRIALS GOV IDENTIFIER NCT04636918. URL: https://clinicaltrials.gov/ct2/show/NCT04636918?cond=ocular+Graft+Versus+Host+Disease&cntry=SG&draw=2&rank=2 .
Collapse
Affiliation(s)
- Louis Tong
- Corneal and External Eye Disease Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore.,Eye-Academic Clinical Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elizabeth Wen Ling Lim
- Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
| | - Sharon Wan Jie Yeo
- Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
| | - Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore.,Eye-Academic Clinical Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yeh Ching Linn
- Department of Haematology, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | - Aloysius Ho
- Department of Haematology, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | - Hein Than
- Department of Haematology, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | - Jeffrey Kim Siang Quek
- Department of Haematology, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | - William Ying Khee Hwang
- Department of Haematology, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | | | - Li Lim
- Corneal and External Eye Disease Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
4
|
Hjortdal J, Griffin MD, Cadoux M, Armitage WJ, Bylesjo M, Gabhann PM, Murphy CC, Pleyer U, Tole D, Vabres B, Walkinshaw MD, Gourraud P, Karakachoff M, Brouard S, Degauque N. Peripheral blood immune cell profiling of acute corneal transplant rejection. Am J Transplant 2022; 22:2337-2347. [PMID: 35704290 PMCID: PMC9796948 DOI: 10.1111/ajt.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
Acute rejection (AR) of corneal transplants (CT) has a profound effect on subsequent graft survival but detailed immunological studies in human CT recipients are lacking. In this multi-site, cross-sectional study, clinical details and blood samples were collected from adults with clinically diagnosed AR of full-thickness (FT)-CT (n = 35) and posterior lamellar (PL)-CT (n = 21) along with Stable CT recipients (n = 177) and adults with non-transplanted corneal disease (n = 40). For those with AR, additional samples were collected 3 months later. Immune cell analysis was performed by whole-genome microarrays (whole blood) and high-dimensional multi-color flow cytometry (peripheral blood mononuclear cells). For both, no activation signature was identified within the B cell and T cell repertoire at the time of AR diagnosis. Nonetheless, in FT- but not PL-CT recipients, AR was associated with differences in B cell maturity and regulatory CD4+ T cell frequency compared to stable allografts. These data suggest that circulating B cell and T cell subpopulations may provide insights into the regulation of anti-donor immune response in human CT recipients with differing AR risk. Our results suggest that, in contrast to solid organ transplants, genetic or cellular assays of peripheral blood are unlikely to be clinically exploitable for prediction or diagnosis of AR.
Collapse
Affiliation(s)
- Jesper Hjortdal
- Department of OphthalmologyAarhus University HospitalAarhusDenmark,Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Centre for Research in Medical DevicesSchool of Medicine, National University of Ireland GalwayGalwayIreland
| | - Marion Cadoux
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| | - W. John Armitage
- Translational Health SciencesUniversity of BristolBristolUK,Tissue and Eye ServicesNHS Blood and TransplantBristolUK
| | - Max Bylesjo
- Fios Genomics Ltd, Nine Edinburgh BioquarterEdinburghUK
| | | | - Conor C. Murphy
- Royal Victoria Eye and Ear HospitalDublinIreland,Royal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | - Uwe Pleyer
- Department of OphthalmologyCharité University HospitalBerlinGermany
| | - Derek Tole
- University Hospitals Bristol NHS Foundations TrustBristol Eye HospitalBristolUK
| | - Bertrand Vabres
- Nantes Université, CHU Nantes, Service OphtalmologieNantesFrance
| | - Malcolm D. Walkinshaw
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Pierre‐Antoine Gourraud
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance,CHU de Nantes, INSERM, CIC 1413, Pôle Hospitalo‐Universitaire 11: Santé Publique, Clinique des donnéesNantesFrance
| | - Matilde Karakachoff
- CHU de Nantes, INSERM, CIC 1413, Pôle Hospitalo‐Universitaire 11: Santé Publique, Clinique des donnéesNantesFrance
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| |
Collapse
|
5
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
6
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|