1
|
Lia F, Attard K. Bioactive Potential of Olive Mill Waste Obtained from Cultivars Grown in the Island of Malta. Foods 2024; 13:1152. [PMID: 38672825 PMCID: PMC11049450 DOI: 10.3390/foods13081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the bioactive potential of olive mill waste derived from cultivars grown in the Maltese Islands through various analytical approaches. Cell culture, cell staining, allelopathic assays, shrimp brine lethality assays, and HPLC analysis were conducted to assess the efficacy and bioactivity of the extracts using different treatments, including methanolic extraction, acid, and alkaline hydrolysis. Notably, the results from cell lines revealed that NB4r2 cells exhibited high susceptibility to the tested extracts, with the lowest IC50 recorded after 72 h of exposure. Notably, the 'Bajda' cultivar displayed the most effectiveness, particularly with acid hydrolysis. In allelopathic assays, higher concentrations of 'Malti', 'Bidni', and 'Bajda' extracts significantly inhibited lettuce seed germination. Similarly, in the brine shrimp lethality assay, higher concentrations led to increased mortality rates of Artemia salina, though rates decreased at lower concentrations. The identification of phenolic compounds found in olive mill waste was conducted using high-performance liquid chromatography (HPLC) with the use of internal standards. The identification revealed a variety of compounds, with 3-hydroxytyrosol and oleacein being present in high abundance in nearly all hydrolyzed and methanolic extracts, whereas gallic acid was found to be the least abundant. These findings highlight the rich bioactive potential of olive mill waste and provide insights into its applications in pharmaceuticals, nutraceuticals, and agriculture, emphasizing the importance of further research to fully exploit these valuable resources.
Collapse
Affiliation(s)
- Frederick Lia
- Institute of Applied Science, Malta College of Arts, Science and Technology, PLA 9032 Paola, Malta;
| | | |
Collapse
|
2
|
Letsiou S, Trapali M, Tebbi SO, Benaida-Debbache N. A simple and robust LC-ESI single quadrupole MS-based method to analyze polyphenols in plant extracts using deep eutectic solvents. MethodsX 2023; 11:102303. [PMID: 37593413 PMCID: PMC10428130 DOI: 10.1016/j.mex.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Currently, the interest in polyphenols is increasing due to their significant properties in health. Polyphenols exist in a range of natural products, however their extraction as well as their characterization are important issues as they are mainly present in complex matrices. Therefore, sensitive and selective analytical methods based on liquid chromatography coupled to tandem mass spectrometry are essential. Nevertheless, access to such high-resolution techniques is quite rare. Thus, in this work we present a simple, selective and robust method based on a single-quadrupole (Q) MS technique) for the analysis of a wide range of polyphenols such as flavonoids, phenolic acids and anthocyanins. Specifically, we present:•A simple liquid chromatography electro-spray ionization (LC-ESI) single-quadrupole mass selective (MS) method for the analysis of 18 different polyphenols.•Application of the method to three plant-based extracts that are derived after green extraction methods.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of chemistry, biochemistry and cosmetic science, Department of Biomedical Science, University of West Attica, Agiou Spyridonos 28, Egaleo, Attiki, Greece
| | - Maria Trapali
- Laboratory of chemistry, biochemistry and cosmetic science, Department of Biomedical Science, University of West Attica, Agiou Spyridonos 28, Egaleo, Attiki, Greece
| | - Sara Oumenoune Tebbi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Nadjet Benaida-Debbache
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
3
|
Antioxidant and DNA-Protective Activity of an Extract Originated from Kalamon Olives Debittering. Antioxidants (Basel) 2023; 12:antiox12020333. [PMID: 36829892 PMCID: PMC9952268 DOI: 10.3390/antiox12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Table olives are a major component of the Mediterranean diet and are associated with many beneficial biological activities, which are mainly related to their phenolic compounds. Olive fruit debittering process defines the quantitative and qualitative composition of table olives in biophenols. The aim of the present study was to evaluate the in vitro antioxidant capacity and DNA-protective activity of an extract originated from brine samples, according to the Greek style debbitering process of Kalamon olive fruits. The main phenolic components determined in the brine extract were hydroxytyrosol (HT), verbascoside (VERB) and tyrosol (T). The in vitro cell-free assays showed strong radical scavenging capacity from the extract, therefore antioxidant potential. At cellular level, human endothelial cells (EA.hy296) and murine myoblasts (C2C12) were treated with non-cytotoxic concentrations of the brine extract and the redox status was assessed by measuring glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation levels (TBARS). Our results show cell type specific response, exerting a hormetic reflection at endothelial cells. Finally, in both cell lines, pre-treatment with brine extract protected from H2O2-induced DNA damage. In conclusion, this is the first holistic approach highlighted table olive wastewaters from Kalamon- Greek style debittering process, as valuable source of bioactive compounds, which could have interesting implications for the development of new products in food or other industries.
Collapse
|
4
|
Gueboudji Z, Kadi K, Mahmoudi M, Hannachi H, Nagaz K, Addad D, Yahya LB, Lachehib B, Hessini K. Maceration and liquid-liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3432-3439. [PMID: 35948794 DOI: 10.1007/s11356-022-22482-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Olive oil mill wastewater (OMW) is a major waste stream generated in olive oil industry. It is highly polluted due to phenolic compounds. The present study focused on the physicochemical properties of OMW as well as the quantitative and qualitative effects of two extraction methods of phenolic compounds which were liquid-liquid and maceration methods. Spectrophotometry and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) were adopted to quantify the phytochemical contents and the phenolic compounds. The extract obtained by the maceration method showed the highest yields of total polyphenol, flavonoid, and tannin contents. The LC-MS results revealed the presence of 16 phenolic compounds in the macerated, and only 12 phenolic compounds were found in the extract of the second method. Quinic acid was identified as the most abundant compound. Moreover, the macerated extracts possessed the highest antioxidant potential as evidenced by their strong ferric reducing antioxidant power (FRAP) and their 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activities. The phytochemical contents, as well as the antioxidant potentials of OMW after extraction using maceration, were significantly greater than using liquid-liquid method. Therefore, maceration seemed to be the most effective method for extracting phenolic compounds from OMW. The OMW constitute a rich source of natural phenolic compounds that could be used as a potential source of natural antioxidants.
Collapse
Affiliation(s)
- Zakia Gueboudji
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Maher Mahmoudi
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia.
- Laboratory of Plant, Soil and Environment Interactions (LIPSE), LR21LS01, University of Tunis El Manar, 1068, Tunis, Tunisia.
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, Street Djerba km 22.5, Medenine, Tunisia.
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity And Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Kamel Nagaz
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | - Dalila Addad
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Leila Ben Yahya
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | | | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|