1
|
Abedini-Nassab R, Adibi E, Ahmadiasl S. Characterization of AI-enhanced magnetophoretic transistors operating in a tri-axial magnetic field for on-chip bioparticle sorting. Sci Rep 2024; 14:23381. [PMID: 39379453 PMCID: PMC11461615 DOI: 10.1038/s41598-024-74761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
We demonstrate two general classes of magnetophoretic transistors, called the "trap" and the "repel-and-collect" transistors, capable of switching single magnetically labeled cells and magnetic particles between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors operating in a two-dimensional in-plane rotating field, the use of a tri-axial magnetic field has the fundamental advantages of preventing particle cluster formation and better syncing of single particles with the general operating clock. We use finite element methods to investigate the energy distribution on the chip surface and to predict the particle behavior at various device geometries. We then fabricate the proposed transistors and compare the experimental results with the simulation predictions. We found that with gate electrical currents of ~ 40 mA for a transistor with proper geometry, complete switching of magnetic particles with diameters in the range of 8-15 μm is achieved. We show that the device is reliable and works well at different magnetic field strengths (50-100 Oe) and frequencies (0.05-0.5 Hz). We also employed an image processing code with a trained convolutional neural network to automate the proposed transistors for identifying and sorting particles with various sizes and magnetic susceptibilities with accuracies higher than 98%. The proposed transistors can be used in designing novel magnetophoretic circuits for important applications in biomedical microdevices and single-cell biology.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Elias Adibi
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| | - Sina Ahmadiasl
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
2
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
3
|
Chong WH, Chan DJC, Liu CZ, Lim J. Navigating the microenvironment with flip and turn under quadrupole magnetophoretic steering control: Nanosphere- and nanorod-coated microbead. Electrophoresis 2024; 45:357-368. [PMID: 38044267 DOI: 10.1002/elps.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.
Collapse
Affiliation(s)
- Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Chun-Zhao Liu
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, Affiliated Qingdao Central Hospital, College of Materials Science and Engineering, Qingdao University, Qingdao, P. R. China
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
4
|
Zeng P, Zhang H, Guan Q, Zhang Q, Yan X, Yu L, Duan L, Wang C. Constructing a 3D interconnected network of Ag nanostructures for high-performance SERS detection of food coloring agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6088-6096. [PMID: 37933465 DOI: 10.1039/d3ay01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The design and preparation of various effective three-dimensional (3D) silver nanostructures is a frontier area of research in the field of surface-enhanced Raman scattering (SERS). This paper demonstrates a simple and novel method for the preparation of a substrate, whose surface was covered by a 3D interconnected network of Ag nanostructures, and the resulting network structure surface is free of organic contaminants. The EDS measurements confirm the metallic nature of the formed 3D Ag nanonetwork substrate. Additionally, the influence of experimental parameters on the morphology of the 3D Ag nanonetwork was also investigated, such as reaction time, hydrofluoric acid concentration, silver nitrate concentration and sodium citrate concentration. The 3D Ag nanonetwork has good uniformity. Importantly, the 3D Ag nanonetwork substrate was used to accurately and reliably detect amaranth (AR) and sunset yellow (SY) in beverages, with the lowest detection limit of 3 and 0.1 μg L-1, respectively. Therefore, this substrate is expected to be a promising candidate for SERS detection and offers attractive potential for a wider range of applications.
Collapse
Affiliation(s)
- Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qianqian Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Luying Duan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
5
|
Zhao D, Xiao P, Dong X, Ge Y, Guo X, Ji J, Cheng Y, Sang S. A mechanical biosensor based on membrane-mediated magneto-stress-electric coupled sensitization for human serum albumin detection. J Mater Chem B 2023; 11:9658-9665. [PMID: 37751229 DOI: 10.1039/d3tb01268a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recently, mechanical biosensors have attracted more attention on single molecule detection due to its high accuracy, low cost, and convenience. However, the sensitivity of the mechanical biosensors restricted their clinical application. Herein, a mechanical biosensor based on membrane-mediated magneto-stress-electric coupled sensitization (MSEC-MMB) was developed to enhance performance. Through introducing Fe3O4 nanoparticles (MNPs) to traditional stress-electric biosensors and applying a magnetic field, a magneto-stress-electric coupled biosensing system was constructed. The sensitivity of the MSEC-MMB was improved via enhancing the deformation of the mechanical membrane, which was demonstrated by detecting HSA. The optimal limit of detection (LOD) was 24 pg mL-1 under a magnetic field of 50 mT. The LOD was significantly 1 order of magnitude lower than that without the magnetic field. Besides, the MSEC-MMB showed a high specificity, selectivity, and stability. The clinical proteinuria samples were accurately detected, suggesting a good practicability of the MSEC-MMB. All these results proved the high sensitivity and practicality of the MSEC-MMB and provide a platform for early nephropathy diagnosis.
Collapse
Affiliation(s)
- Dong Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Pengli Xiao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | | | - Yang Ge
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jianlong Ji
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yongqiang Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
6
|
Abedini-Nassab R, Sadeghidelouei N, Shields Iv CW. Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation. Anal Chim Acta 2023; 1272:341425. [PMID: 37355317 PMCID: PMC10317203 DOI: 10.1016/j.aca.2023.341425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Lab-on-a-chip tools have played a pivotal role in advancing modern biology and medicine. A key goal in this field is to precisely transport single particles and cells to specific locations on a chip for quantitative analysis. To address this large and growing need, magnetophoretic circuits have been developed in the last decade to manipulate a large number of single bioparticles in a parallel and highly controlled manner. Inspired by electrical circuits, magnetophoretic circuits are composed of passive and active circuit elements to offer commensurate levels of control and automation for transporting individual bioparticles. These specifications make them unique compared to other technologies in addressing crucial bioanalytical applications and answering fundamental questions buried in highly heterogeneous cell populations. In this comprehensive review, we describe key theoretical considerations for manufacturing and simulating magnetophoretic circuits. We provide a detailed tutorial for operating magnetophoretic devices containing different circuit elements (e.g., conductors, diodes, capacitors, and transistors). Finally, we provide a critical comparison of the utility of these devices to other microchip-based platforms for cellular manipulation, and discuss how they may address unmet needs in single-cell biology and medicine.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
| | - Negar Sadeghidelouei
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, United States
| |
Collapse
|