1
|
Chikami Y, Yahata K. The structural and functional modularity of ovarian follicle epithelium in the pill-millipede Hyleoglomeris japonica Verhoeff, 1936 (Diplopoda: Glomerida: Glomeridae). Tissue Cell 2024; 88:102372. [PMID: 38598872 DOI: 10.1016/j.tice.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Ovarian somatic tissues typically surround developing oocytes and play a crucial role in oogenesis across various metazoans, often displaying structural properties specific to their functions. However, there is an absence of evident structural modularity in the follicle epithelium of Myriapoda. We report here two structurally and developmentally distinct domains within the follicle epithelium of the Japanese pill millipede, Hyleoglomeris japonica. The follicle epithelium of H. japonica exhibits a thick cell mass at the apex of the follicle. These cells harbor abundant rough endoplasmic reticulum, mitochondria, Golgi complexes, and numerous microvilli, indicative of synthetic/secretory activities. Moreover, their height increases as oogenesis progresses. In contrast, another region of the epithelium lacks these features. Our findings highlight the presence of structural and functional modularity in the follicle epithelium of H. japonica. We suggest classifying the follicle epithelium of Myriapoda into three types: homogenous epithelia with enhanced synthetic activities, homogenous epithelia with diminished such activities, and heterogeneous epithelia with varying synthetic activities. These findings prompt a reevaluation of the nature of ovarian somatic tissues in Myriapoda as well as in Arthropoda.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
2
|
Kayastha P, Wieczorkiewicz F, Pujol M, Robinson A, Michalak M, Kaczmarek Ł, Poprawa I. Elevated external temperature affects cell ultrastructure and heat shock proteins (HSPs) in Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. Sci Rep 2024; 14:5097. [PMID: 38429316 PMCID: PMC10907573 DOI: 10.1038/s41598-024-55295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Increasing temperature influences the habitats of various organisms, including microscopic invertebrates. To gain insight into temperature-dependent changes in tardigrades, we isolated storage cells exposed to various temperatures and conducted biochemical and ultrastructural analysis in active and tun-state Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. The abundance of heat shock proteins (HSPs) and ultrastructure of the storage cells were examined at different temperatures (20 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 42 °C) in storage cells isolated from active specimens of Pam. experimentalis. In the active animals, upon increase in external temperature, we observed an increase in the levels of HSPs (HSP27, HSP60, and HSP70). Furthermore, the number of ultrastructural changes in storage cells increased with increasing temperature. Cellular organelles, such as mitochondria and the rough endoplasmic reticulum, gradually degenerated. At 42 °C, cell death occurred by necrosis. Apart from the higher electron density of the karyoplasm and the accumulation of electron-dense material in some mitochondria (at 42 °C), almost no changes were observed in the ultrastructure of tun storage cells exposed to different temperatures. We concluded that desiccated (tun-state) are resistant to high temperatures, but not active tardigrades (survival rates of tuns after 24 h of rehydration: 93.3% at 20 °C, 60.0% at 35 °C, 33.3% at 37 °C, 33.3% at 40 °C, and 20.0% at 42 °C).
Collapse
Affiliation(s)
- Pushpalata Kayastha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Filip Wieczorkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Myriam Pujol
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alison Robinson
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| |
Collapse
|
3
|
Papa G, Power K, Forestieri B, Capitani G, Maiolino P, Negri I. Effects of oral exposure to brake wear particulate matter on the springtail Orthonychiurus folsomi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121659. [PMID: 37080517 DOI: 10.1016/j.envpol.2023.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Most of the heavy metals in urban environments derives from road traffic, particularly from tyres and brake wear (non-exhaust emission sources). These pollutants contaminate the soil, where several organisms have a primary ecosystem role (e.g., springtails, ants, earthworms). Springtails (Collembola) are soil-dwelling animals regulating soil fertility, flow of energy through above- and below-ground food webs, and they contribute to soil microbial community dispersion and biodiversity maintenance. In this study we investigated the ecotoxicological effects of oral exposure to particles emitted from brake pads and cast-iron brake discs in the euedaphic collembola species Orthonychiurus folsomi under laboratory conditions. Our results showed that chronic exposure to brake wear particles can have sub-lethal effects both at low and high concentrations and it can cause histological alterations. Here, SEM-EDX was applied to observe the particulate and we found its chemical markers in the gut and faeces of collembola, while histological analysis detected alterations of the digestive and reproductive systems and of the abdominal fat body at high concentrations.
Collapse
Affiliation(s)
- Giulia Papa
- Department of Sustainable Crop Production DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy; Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Turin, Italy
| | - Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Bartolo Forestieri
- Department of Sustainable Crop Production DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giancarlo Capitani
- Department of Earth and Environmental Sciences DISAT, Università Milano Bicocca, 20126 Milano, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Ilaria Negri
- Department of Sustainable Crop Production DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
4
|
Pu W, Chu X, Guo H, Huang G, Cui T, Huang B, Dai X, Zhang C. The activated ATM/AMPK/mTOR axis promotes autophagy in response to oxidative stress-mediated DNA damage co-induced by molybdenum and cadmium in duck testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120574. [PMID: 36351481 DOI: 10.1016/j.envpol.2022.120574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) have multiple organ toxicity, and testis is one of their important target organs, but the reproductive toxicity of Mo and Cd combined treatment is still unclear. To explore the effects of Mo and Cd co-exposure on DNA damage and autophagy from the insight of ATM/AMPK/mTOR axis in duck testes, we randomly assigned 40 healthy 8-day-old ducks to control, Mo (100 mg/kg Mo), Cd (4 mg/kg Cd), and Mo + Cd groups for 16 weeks. Results found that Mo and/or Cd exposure caused trace elements imbalance, oxidative stress with a decrease in the activities of GSH-Px, CAT, T-SOD and GSH content, an increase in the concentrations of H2O2 and MDA and pathological damage. Additionally, Mo and/or Cd markedly raised DNA damage-related factors expression levels and 8-OHdG content, caused G1/S arrest followed by decreasing CDK2 and Cyclin E protein levels and increasing CDK1 and Cyclin B protein levels, and activated ATM/AMPK/mTOR axis by enhancing p-ATM/ATM, p-AMPK/AMPK and reducing p-mTOR/mTOR protein levels, eventually triggered autophagy by elevating LC3A, LC3B, Atg5, Beclin-1 mRNA levels and LC3II/LC3I, Beclin-1 protein levels and reducing P62, Dynein, mTOR mRNA levels and P62 protein level. Moreover, these changes were most apparent in the combined group. Altogether, the results reveal that autophagy caused by Mo and/or Cd may be associated with activating the DNA damage-mediated ATM/AMPK/mTOR axis in duck testes, and Mo and Cd co-exposure exacerbates these changes.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
5
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Skowronek M, Student S, Leśniewska M. Hazards related to the presence of cadmium in food - Studies on the European soil centipede, Lithobius forficatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157298. [PMID: 35839889 DOI: 10.1016/j.scitotenv.2022.157298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 05/28/2023]
Abstract
The soil is an environment rich in numerous potentially toxic substances/elements when present at elevated concentrations. They can be transported through the successive levels of the trophic chain. Animals living in a contaminated environment or eating contaminated food can accumulate potentially toxic elements in their bodies. One of the potentially toxic metals is cadmium, which accumulates significantly in soils. The aim of our research was to evaluate the changes caused by cadmium supplied with the food administered to invertebrates living in uncontaminated soil. The results were compared with those obtained for animals raised in contaminated soil, where cadmium entered the body via the epidermis. As the material for studies, we chose a common European soil centipede, Lithobius forficatus. Adult specimens were divided into the following experimental groups: C - control animals, Cd12 and Cd45 - animals fed with Chironomus larvae maintained in water containing 80 mg/l CdCl2, for 12 and 45 days, respectively. The material was analyzed using qualitative and quantitative analysis (transmission electron microscopy, confocal microscopy, flow cytometry, atomic absorption spectrometry). Eventually, we can conclude that the digestive system is an effective barrier against the effects of toxic metals on the entire organism, but among the gonads, ovaries are more protected than testes, however, this protection is not sufficient. Accumulation of spherites and mitochondrial alterations are probably involved in survival mechanisms of tissues after Cd intoxication.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Chajec
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Chachulska-Żymełka
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Grażyna Wilczek
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Skowronek
- University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland; Silesian University of Technology, Biotechnology Center, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Małgorzata Leśniewska
- Adam Mickiewicz University, Department of General Zoology, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|