1
|
Luan W, Wright AL, Brown-Wright H, Le S, San Gil R, Madrid San Martin L, Ling K, Jafar-Nejad P, Rigo F, Walker AK. Early activation of cellular stress and death pathways caused by cytoplasmic TDP-43 in the rNLS8 mouse model of ALS and FTD. Mol Psychiatry 2023; 28:2445-2461. [PMID: 37012334 PMCID: PMC10611572 DOI: 10.1038/s41380-023-02036-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
TAR DNA binding protein 43 (TDP-43) pathology is a key feature of over 95% of amyotrophic lateral sclerosis (ALS) and nearly half of frontotemporal dementia (FTD) cases. The pathogenic mechanisms of TDP-43 dysfunction are poorly understood, however, activation of cell stress pathways may contribute to pathogenesis. We, therefore, sought to identify which cell stress components are critical for driving disease onset and neurodegeneration in ALS and FTD. We studied the rNLS8 transgenic mouse model, which expresses human TDP-43 with a genetically-ablated nuclear localisation sequence within neurons of the brain and spinal cord resulting in cytoplasmic TDP-43 pathology and progressive motor dysfunction. Amongst numerous cell stress-related biological pathways profiled using qPCR arrays, several critical integrated stress response (ISR) effectors, including CCAAT/enhancer-binding homologous protein (Chop/Ddit3) and activating transcription factor 4 (Atf4), were upregulated in the cortex of rNLS8 mice prior to disease onset. This was accompanied by early up-regulation of anti-apoptotic gene Bcl2 and diverse pro-apoptotic genes including BH3-interacting domain death agonist (Bid). However, pro-apoptotic signalling predominated after onset of motor phenotypes. Notably, pro-apoptotic cleaved caspase-3 protein was elevated in the cortex of rNLS8 mice at later disease stages, suggesting that downstream activation of apoptosis drives neurodegeneration following failure of early protective responses. Unexpectedly, suppression of Chop in the brain and spinal cord using antisense oligonucleotide-mediated silencing had no effect on overall TDP-43 pathology or disease phenotypes in rNLS8 mice. Cytoplasmic TDP-43 accumulation therefore causes very early activation of ISR and both anti- and pro-apoptotic signalling that switches to predominant pro-apoptotic activation later in disease. These findings suggest that precise temporal modulation of cell stress and death pathways may be beneficial to protect against neurodegeneration in ALS and FTD.
Collapse
Affiliation(s)
- Wei Luan
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Amanda L Wright
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Heledd Brown-Wright
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Sheng Le
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Lidia Madrid San Martin
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, 90201, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 90201, USA
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Lv M, Zhang Y, Yang L, Cao X. Depletion of chop suppresses procedural apoptosis and enhances innate immunity in loach Misgurnus anguillicaudatus under ammonia nitrogen stress. J Anim Sci 2023; 101:skad114. [PMID: 37102217 PMCID: PMC10184690 DOI: 10.1093/jas/skad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023] Open
Abstract
Ammonia nitrogen is highly toxic to fish, and it can easily cause fish poisoning or even high mortality. So far, many studies have been conducted on the damages to fish under ammonia nitrogen stress. However, there are few studies of ammonia tolerance improvement in fish. In this study, the effects of ammonia nitrogen exposure on apoptosis, endoplasmic reticulum (ER) stress, and immune cells in loach Misgurnus anguillicaudatus were investigated. Loaches (60 d post fertilization) were exposed to different concentrations of NH4Cl, and their survival rates were examined every 6 h. The results showed that high-concentration and long-time NH4Cl exposure (20 mM + 18 h; 15 mM + 36 h) induced apoptosis and gill tissue damages, finally causing a decline in survival. chop plays an important role in ER stress-induced apoptosis, and thus we constructed a model of chop-depleted loach by using CRISPR/Cas9 technology to investigate its response to ammonia nitrogen stress. The results showed that ammonia nitrogen stress down-regulated the expressions of apoptosis-related genes in chop+/- loach gills, while wildtype (WT) exhibited an opposite gene expression regulation pattern, suggesting that the depletion of chop suppressed apoptosis level. In addition, chop+/- loach showed a larger number of immunity-related cells and higher survival rate than WT under the NH4Cl exposure, indicating that the inhibition of chop function strengthened the innate immune barrier in general, thus increasing survival. Our findings provide the theoretical basis for developing high ammonia nitrogen-tolerant germplasm with aquaculture potential.
Collapse
Affiliation(s)
- Meiqi Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbang Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022; 23:ijms232214188. [PMID: 36430666 PMCID: PMC9694178 DOI: 10.3390/ijms232214188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
| | | | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jérome Honnorat
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677 Lyon, France
- SynatAc Team, Institut NeuroMyoGène, 69677 Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-293-5517; Fax: +1-614-293-7599
| |
Collapse
|