1
|
Zhang X, Liew KJ, Cao L, Wang J, Chang Z, Tan MCY, Chong KL, Chong CS. Transcriptome analysis of Candida albicans planktonic cells in response to plasma medicine. J Med Microbiol 2024; 73. [PMID: 38967406 DOI: 10.1099/jmm.0.001841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Introduction. Cold plasma is frequently utilized for the purpose of eliminating microbial contaminants. Under optimal conditions, it can function as plasma medicine for treating various diseases, including infections caused by Candida albicans, an opportunistic pathogen that can overgrow in individuals with weakened immune system.Gap Statement. To date, there has been less molecular study on cold plasma-treated C. albicans.Research Aim. The study aims to fill the gap in understanding the molecular response of C. albicans to cold plasma treatment.Methodology. This project involved testing a cold plasma generator to determine its antimicrobial effectiveness on C. albicans' planktonic cells. Additionally, the cells' transcriptomics responses were investigated using RNA sequencing at various treatment durations (1, 3 and 5 min).Results. The results show that our cold plasma effectively eliminates C. albicans. Cold plasma treatment resulted in substantial downregulation of important pathways, such as 'nucleotide metabolism', 'DNA replication and repair', 'cell growth', 'carbohydrate metabolism' and 'amino acid metabolism'. This was an indication of cell cycle arrest of C. albicans to preserve energy consumption under unfavourable conditions. Nevertheless, C. albicans adapted its GSH antioxidant system to cope with the oxidative stress induced by reactive oxygen species, reactive nitrogen species and other free radicals. The treatment likely led to a decrease in cell pathogenicity as many virulence factors were downregulated.Conclusion. The study demonstrated the major affected pathways in cold plasma-treated C. albicans, providing valuable insights into the molecular response of C. albicans to cold plasma treatment. The findings contribute to the understanding of the antimicrobial efficiency of cold plasma and its potential applications in the field of microbiology.
Collapse
Affiliation(s)
- Xinhua Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213028, PR China
- Suzhou Amazing Grace Medical Equipment Co., Ltd, Suzhou 215101, PR China
- Jiangsu Huayu Printing & Coating Equipment Co. Ltd, Nantong 226300, PR China
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Li Cao
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, PR China
| | - Jie Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, PR China
| | - Zhidong Chang
- Suzhou Amazing Grace Medical Equipment Co., Ltd, Suzhou 215101, PR China
| | - Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Kheng Loong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
2
|
Lucas DR, Damica FZ, Toledo EB, Cogo AJD, Okorokova-Façanha AL, Gomes VM, de Oliveira Carvalho A. Bioinspired peptides induce different cell death mechanisms against opportunistic yeasts. Probiotics Antimicrob Proteins 2024; 16:649-672. [PMID: 37076595 PMCID: PMC10115610 DOI: 10.1007/s12602-023-10064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/21/2023]
Abstract
The management of fungal diseases imposes an urgent need for the development of effective antifungal drugs. Among new drug candidates are the antimicrobial peptides, and especially their derivatives. Here, we investigated the molecular mechanism of action of three bioinspired peptides against the opportunistic yeasts Candida tropicalis and Candida albicans. We assessed morphological changes, mitochondrial functionality, chromatin condensation, ROS production, activation of metacaspases, and the occurrence of cell death. Our results indicated that the peptides induced sharply contrasting death kinetics, of 6 h for RR and 3 h for D-RR to C. tropicalis and 1 h for WR to C. albicans. Both peptide-treated yeasts exhibited increased ROS levels, mitochondrial hyperpolarization, cell size reduction, and chromatin condensation. RR and WR induced necrosis in C. tropicalis and C. albicans, but not D-RR in C. tropicalis. The antioxidant ascorbic acid reverted the toxic effect of RR and D-RR, but not WR, suggesting that instead of ROS there is a second signal triggered that leads to yeast death. Our data suggest that RR induced a regulated accidental cell death in C. tropicalis, D-RR induced a programmed cell death metacaspase-independent in C. tropicalis, while WR induced an accidental cell death in C. albicans. Our results were obtained with the LD100 and within the time that the peptides induce the yeast death. Within this temporal frame, our results allow us to gain clarity on the events triggered by the peptide-cell interaction and their temporal order, providing a better understanding of the death process induced by them.
Collapse
Affiliation(s)
- Douglas Ribeiro Lucas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Filipe Zaniratti Damica
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Estefany Braz Toledo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Antônio Jesus Dorighetto Cogo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Anna Lvovna Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil.
| |
Collapse
|
3
|
Bienvenu AL, Ballut L, Picot S. Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. J Fungi (Basel) 2024; 10:90. [PMID: 38392762 PMCID: PMC10889698 DOI: 10.3390/jof10020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
The World Health Organization (WHO) recently published a list of fungal priority pathogens, including Candida albicans and C. auris. The increased level of resistance of Candida is raising concern, considering the availability of only four classes of medicine. The WHO is seeking novel agent classes with different targets and mechanisms of action. Targeting Candida metacaspases to control intrinsic cell death could provide new therapeutic opportunities for invasive candidiasis. In this review, we provide the available evidence for Candida cell death, describe Candida metacaspases, and discuss the potential of Candida metacaspases to offer a new specific target. Targeting Candida cell death has good scientific rationale given that the fungicidal activity of many marketed antifungals is mediated, among others, by cell death triggering. But none of the available antifungals are specifically activating Candida metacaspases, making this target a new therapeutic opportunity for non-susceptible isolates. It is expected that antifungals based on the activation of fungi metacaspases will have a broad spectrum of action, as metacaspases have been described in many fungi, including filamentous fungi. Considering this original mechanism of action, it could be of great interest to combine these new antifungal candidates with existing antifungals. This approach would help to avoid the development of antifungal resistance, which is especially increasing in Candida.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, 69367 Lyon, France
| | - Stephane Picot
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
- Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
4
|
Qian W, Lu J, Gao C, Liu Q, Yao W, Wang T, Wang X, Wang Z. Isobavachalcone exhibits antifungal and antibiofilm effects against C. albicans by disrupting cell wall/membrane integrity and inducing apoptosis and autophagy. Front Cell Infect Microbiol 2024; 14:1336773. [PMID: 38322671 PMCID: PMC10845358 DOI: 10.3389/fcimb.2024.1336773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Isobavachalcone (IBC) is a natural flavonoid with multiple pharmacological properties. This study aimed to evaluate the efficacy of IBC against planktonic growth and biofilms of Candida albicans (C. albicans) and the mechanisms underlying its antifungal action. The cell membrane integrity, cell metabolic viability, and cell morphology of C. albicans treated with IBC were evaluated using CLSM and FESEM analyses. Crystal violet staining, CLSM, and FESEM were used to assess the inhibition of biofilm formation, as well as dispersal and killing effects of IBC on mature biofilms. RNA-seq combined with apoptosis and autophagy assays was used to examine the mechanisms underlying the antifungal action of IBC. IBC exhibited excellent antifungal activity with 8 μg/mL of MIC for C. albicans. IBC disrupted the cell membrane integrity, and inhibited biofilm formation. IBC dispersed mature biofilms and damaged biofilm cells of C. albicans at 32 μg/mL. Moreover, IBC induced apoptosis and autophagy-associated cell death of C. albicans. The RNA-seq analysis revealed upregulation or downregulation of key genes involved in cell wall synthesis (Wsc1 and Fks1), ergosterol biosynthesis (Erg3, and Erg11), apoptisis (Hsp90 and Aif1), as well as autophagy pathways (Atg8, Atg13, and Atg17), and so forth, in response to IBC, as evidenced by the experiment-based phenotypic analysis. These results suggest that IBC inhibits C. albicans growth by disrupting the cell wall/membrane, caused by the altered expression of genes associated with β-1,3-glucan and ergosterol biosynthesis. IBC induces apoptosis and autophagy-associated cell death by upregulating the expression of Hsp90, and altering autophagy-related genes involved in the formation of the Atg1 complex and the pre-autophagosomal structure. Together, our findings provide important insights into the potential multifunctional mechanism of action of IBC.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Wendi Yao
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Kim S, Kim SH, Kweon E, Kim J. Apoptotic Factors, CaNma111 and CaYbh3, Function in Candida albicans Filamentation by Regulating the Hyphal Suppressors, Nrg1 and Tup1. J Microbiol 2023; 61:403-409. [PMID: 36972003 DOI: 10.1007/s12275-023-00034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
The morphological switch from the yeast to hyphal form is a key virulence attribute of the opportunistic fungal pathogen, Candida albicans. Our recent report showed that deletion of the newly identified apoptotic factor, CaNma111 or CaYbh3, leads to hyperfilamentation and increased virulence in a mouse infection model. CaNma111 and CaYbh3 are homologs of the pro-apoptotic protease, HtrA2/Omi, and BH3-only protein, respectively. In this study, we examined the effects of CaNMA111 and CaYBH3 deletion mutations on the expression levels of the hypha-specific transcription factors, Cph1 (a hyphal activator), Nrg1 (a hyphal repressor), and Tup1 (a hyphal repressor). The protein levels of Nrg1 were decreased in Caybh3/Caybh3 cells while those of Tup1 were decreased in both Canma111/Canma111 and Caybh3/Caybh3 cells. These effects on Nrg1 and Tup1 proteins were retained during serum-induced filamentation and appear to explain the hyperfilamentation phenotypes of the CaNMA111 and CaYBH3 deletion mutants. Treatment with the apoptosis-inducing dose of farnesol decreased the Nrg1 protein levels in the wild-type strain and more evidently in Canma111/Canma111 and Caybh3/Caybh3 mutant strains. Together, our results suggest that CaNma111 and CaYbh3 are key regulators of Nrg1 and Tup1 protein levels in C. albicans.
Collapse
Affiliation(s)
- Suyoung Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Se Hyeon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eunjoong Kweon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Bilal H, Hou B, Shafiq M, Chen X, Shahid MA, Zeng Y. Antifungal susceptibility pattern of Candida isolated from cutaneous candidiasis patients in eastern Guangdong region: A retrospective study of the past 10 years. Front Microbiol 2022; 13:981181. [PMID: 35992679 PMCID: PMC9389287 DOI: 10.3389/fmicb.2022.981181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cutaneous candidiasis is one of the most prevalent mycotic infections caused by Candida species. The severity of infection mounts faster when the species shows antifungal resistance. In the current retrospective study, we aimed to analyze the occurrence, causes of cutaneous candidiasis, and antifungal susceptibility pattern of Candida isolates from Skin and Venereal Diseases Prevention and Control Hospital of Shantou, located in eastern Guangdong, China. The laboratory data of all patients (n = 3,113) suffering from various skin and venereal infections during January 2012 to December 2021 was analyzed through Excel and GraphPad prism. Our analysis indicate that cutaneous candidiasis was 22.29% (n = 694), of which 78.53% (n = 554) of patients were males and 21.47% (n = 149) of patients were females. The median age of patients with cutaneous candidiasis was 38-year [interquartile range (30-48)]. Most cases occurred in the adult age group (19-50 years). Regarding the species type, the Candida albicans were prominently detected (n = 664, 95.68%), while non-C. albicans were found only in 30 (4.32%) patients, which were C. glabrata (n = 18), C. krusei (n = 8), C. tropicalis (n = 3), and C. parapsilosis (n = 1). The C. albicans susceptibility rate for terbinafine, miconazole, voriconazole, itraconazole, fluconazole, ketoconazole, nystatin, 5-flucytosine and amphotericin B were 10.83, 29.32, 59.39, 78.53, 85.28, 87.75, 99.59, 99.41, and 100%, respectively. Finally, all C. glabrata isolates were found susceptible to all tested azole drugs with exception to miconazole against which 8.33% of isolates showed resistance. The findings of this study will help healthcare officials to establish better antifungal stewardship in the region.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bing Hou
- Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xinyu Chen
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yuebin Zeng,
| |
Collapse
|