1
|
Zaninello M, Baptista P, Duarte FV. Mitochondrial Dynamics and mRNA Translation: A Local Synaptic Tale. BIOLOGY 2024; 13:746. [PMID: 39336173 PMCID: PMC11428642 DOI: 10.3390/biology13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Mitochondria are dynamic organelles that can adjust and respond to different stimuli within a cell. This plastic ability allows them to effectively coordinate several cellular functions in cells and becomes particularly relevant in highly complex cells such as neurons. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular function and ultimately to a range of diseases, including neurodegenerative disorders. Regulation of mRNA transport and local translation inside neurons is crucial for maintaining the proteome of distal mitochondria, which is vital for energy production and synaptic function. A significant portion of the axonal transcriptome is dedicated to mRNAs for mitochondrial proteins, emphasizing the importance of local translation in sustaining mitochondrial function in areas far from the cell body. In neurons, local translation and the regulation of mRNAs encoding mitochondrial-shaping proteins could be essential for synaptic plasticity and neuronal health. The dynamics of these mRNAs, including their transport and local translation, may influence the morphology and function of mitochondria, thereby affecting the overall energy status and responsiveness of synapses. Comprehending the mitochondria-related mRNA regulation and local translation, as well as its influence on mitochondrial morphology near the synapses will help to better understand neuronal physiology and neurological diseases where mitochondrial dysfunction and impaired synaptic plasticity play a central role.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Pedro Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Lang R, Hodgson RE, Shelkovnikova TA. TDP-43 in nuclear condensates: where, how, and why. Biochem Soc Trans 2024; 52:1809-1825. [PMID: 38958608 PMCID: PMC11668305 DOI: 10.1042/bst20231447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.
Collapse
Affiliation(s)
- Ruaridh Lang
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| |
Collapse
|
3
|
Zhang X, Das T, Chao TF, Trinh V, Carmen-Orozco RP, Ling JP, Kalab P, Hayes LR. Multivalent GU-rich oligonucleotides sequester TDP-43 in the nucleus by inducing high molecular weight RNP complexes. iScience 2024; 27:110109. [PMID: 38989321 PMCID: PMC11233918 DOI: 10.1016/j.isci.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt that contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tanuza Das
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tiffany F. Chao
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Vickie Trinh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Lindsey R. Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Brain Science Institute, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Lambert-Smith IA, Shephard VK, McAlary L, Yerbury JJ, Saunders DN. High-content analysis of proteostasis capacity in cellular models of amyotrophic lateral sclerosis (ALS). Sci Rep 2024; 14:13844. [PMID: 38879591 PMCID: PMC11180180 DOI: 10.1038/s41598-024-64366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. However, the proteostasis processes that become disturbed in ALS are not fully understood. Obtaining more detailed knowledge of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of several ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Victoria K Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
5
|
Ziff OJ, Harley J, Wang Y, Neeves J, Tyzack G, Ibrahim F, Skehel M, Chakrabarti AM, Kelly G, Patani R. Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. Neuron 2023; 111:3011-3027.e7. [PMID: 37480846 DOI: 10.1016/j.neuron.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by nucleocytoplasmic mislocalization of the RNA-binding protein (RBP) TDP-43. However, emerging evidence suggests more widespread mRNA and protein mislocalization. Here, we employed nucleocytoplasmic fractionation, RNA sequencing, and mass spectrometry to investigate the localization of mRNA and protein in induced pluripotent stem cell-derived motor neurons (iPSMNs) from ALS patients with TARDBP and VCP mutations. ALS mutant iPSMNs exhibited extensive nucleocytoplasmic mRNA redistribution, RBP mislocalization, and splicing alterations. Mislocalized proteins exhibited a greater affinity for redistributed transcripts, suggesting a link between RBP mislocalization and mRNA redistribution. Notably, treatment with ML240, a VCP ATPase inhibitor, partially restored mRNA and protein localization in ALS mutant iPSMNs. ML240 induced changes in the VCP interactome and lysosomal localization and reduced oxidative stress and DNA damage. These findings emphasize the link between RBP mislocalization and mRNA redistribution in ALS motor neurons and highlight the therapeutic potential of VCP inhibition.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| | - Jasmine Harley
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; Institute of Molecular and Cell Biology, A(∗)STAR Research Entities, Singapore 138673, Singapore
| | - Yiran Wang
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giulia Tyzack
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| |
Collapse
|
6
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
7
|
Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, Liu S, Zhang H, Zhou F, Liu J, Zhang L, Zhou S, Guan Y, Wang X. Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12060971. [PMID: 36980310 PMCID: PMC10047679 DOI: 10.3390/cells12060971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment.
Collapse
Affiliation(s)
- Hongmei Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Shiyue Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Shuanhu Zhou
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
| | - Yingjun Guan
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Xin Wang
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|