1
|
Gangemi CMA, Monforte M, Arrigo A, Bonaccorsi PM, Conoci S, Iaconis A, Puntoriero F, Franco D, Barattucci A. Synthesis of Bodipy-Tagged Galactoconjugates and Evaluation of Their Antibacterial Properties. Molecules 2024; 29:2299. [PMID: 38792159 PMCID: PMC11124175 DOI: 10.3390/molecules29102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.
Collapse
Affiliation(s)
- Chiara Maria Antonietta Gangemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Maura Monforte
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Antonino Arrigo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Paola Maria Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Antonella Iaconis
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| |
Collapse
|
2
|
Xu C, Ni L, Li S, Du C, Sang W, Jiang Z. Quorum sensing regulation in Microcystis aeruginosa: Insights into AHL-mediated physiological processes and MC-LR production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170867. [PMID: 38340844 DOI: 10.1016/j.scitotenv.2024.170867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in Gram-negative bacteria, primarily involving the secretion of N-acyl homoserine lactone (AHL) to facilitate population density sensing. However, the existence of QS in blue-green algae, a subset of photoautotrophic Gram-negative bacteria forming high-density communities in water blooms, remains elusive. This study delves into the unexplored realm of QS in Microcystis aeruginosa (M. aeruginosa) by investigating AHL-related regulatory mechanisms and their impact on various physiological processes. Utilizing high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and biosensors, a hitherto unknown long-chain AHL exhibiting a mass-to-charge ratio of 318 was identified in sterile M. aeruginosa cultures. Our investigation focused on discerning correlations between AHL activity fluctuations and key parameters such as microcystin (MC-LR) production, algal density, photosynthesis, buoyancy, and aggregation. Furthermore, the AHL extract was introduced during the logarithmic stage of M. aeruginosa cultures to observe the response in physiological processes. The results revealed that AHL, functioning as an autoinducer (AI), positively influenced algal growth and photosynthesis, as evidenced by the upregulated photosynthetic conversion efficiency of PSI and chlorophyll synthesis gene (psbA). AI also played a crucial role in altering surface characteristics through the synthesis of polysaccharides and proteins in EPS, subsequently promoting cell aggregation. Concomitantly, AI upregulated mcyD, enhancing the synthesis of MC-LR. Notably, our investigation pinpointed the initiation of QS in Microcystis at a density of approximately 1.22 × 10^7 cells/mL. This groundbreaking evidence underscores the regulatory role of AI in governing the physiological processes of growth, aggregation, buoyancy, and MC-LR production by activating pertinent gene expressions. This study significantly expands the understanding of QS in AHL, providing crucial insights into the regulatory networks operating in blue-green algae.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Zhiyun Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
3
|
Truong-Bolduc QC, Yonker LM, Wang Y, Lawton BG, Hooper DC. NorA efflux pump mediates Staphylococcus aureus response to Pseudomonas aeruginosa pyocyanin toxicity. Antimicrob Agents Chemother 2024; 68:e0100123. [PMID: 38231535 PMCID: PMC10848749 DOI: 10.1128/aac.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Chen J, Gu C, Ruan Z, Tang M. Competition of SARS-CoV-2 variants on the pandemic transmission dynamics. CHAOS, SOLITONS, AND FRACTALS 2023; 169:113193. [PMID: 36817403 PMCID: PMC9915129 DOI: 10.1016/j.chaos.2023.113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 has produced various variants during its ongoing evolution. The competitive behavior driven by the co-transmission of these variants has influenced the pandemic transmission dynamics. Therefore, studying the impact of competition between SARS-CoV-2 variants on pandemic transmission dynamics is of considerable practical importance. In order to formalize the mechanism of competition between SARS-CoV-2 variants, we propose an epidemic model that takes into account the co-transmission of competing variants. The model focuses on how cross-immunity influences the transmission dynamics of SARS-CoV-2 through competitive mechanisms between strains. We found that inter-strain competition affects not only both the final size and the replacement time of the variants, but also the invasive behavior of new variants in the future. Due to the limited extent of cross-immunity in previous populations, we predict that the new strain may infect the largest number of individuals in China without control interventions. Moreover, we also observed the possibility of periodic outbreaks in the same lineage and the possibility of the resurgence of previous lineages. Without the invasion of a new variant, the previous variant (Delta variant) is projected to resurgence as early as 2023. However, its resurgence may be prevented by a new variant with a greater competitive advantage.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changgui Gu
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongyuan Ruan
- Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ming Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Serrano I, Alhinho B, Cunha E, Tavares L, Trindade A, Oliveira M. Bacteriostatic and Antibiofilm Efficacy of a Nisin Z Solution against Co-Cultures of Staphylococcus aureus and Pseudomonas aeruginosa from Diabetic Foot Infections. Life (Basel) 2023; 13:life13020504. [PMID: 36836861 PMCID: PMC9964538 DOI: 10.3390/life13020504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Diabetes mellitus (DM) patients frequently develop diabetic foot ulcers (DFU) which are generally infected by a community of microorganisms, mainly Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exhibit a multi-drug resistance profile and biofilm-forming ability which represent a hurdle in the treatment of diabetic foot infections (DFI). We aimed to evaluate the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe DFI. Nisin Z shows antibacterial activity against Gram-positive and Gram-negative bacteria and an increased antibacterial effect against Gram-negatives when added to EDTA. As such, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) were determined for Nisin Z, Nisin Z + EDTA (0.4%), and Nisin Z + EDTA incorporated into guar gum, in order to test its efficacy against S. aureus and P. aeruginosa isolated from the same DFU. Results showed that Nisin Z added to the chelation agent EDTA displayed higher antibacterial and bacteriostatic efficacy against mono and dual co-cultures of S. aureus and P. aeruginosa, and higher antibiofilm efficiency against monocultures. Nisin Z was moderately cytotoxic at 200 µg/mL. Prospect in vivo studies are needed to confirm the potential of Nisin Z supplemented with EDTA to be used as a complement to conventional antibiotic therapy for severe DFI.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bernardo Alhinho
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandre Trindade
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Presently at Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Correspondence: ; Tel.: +352-213-602-052
| |
Collapse
|
7
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|