1
|
Yang Q, Shen F, Yu Z, Wang M, Zheng X, Chen J, Yang J, Zeng L, Li S. The effects of early-life whisker deprivation on adolescent behavior in C57BL/6J mice. Brain Res 2025; 1851:149475. [PMID: 39863242 DOI: 10.1016/j.brainres.2025.149475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Whisker deprivation at different stages of early development results in varied behavioral outcomes. However, there is a notable lack of systematic studies evaluating the specific effects of whisker deprivation from postnatal day 0 (P0) to P14 on adolescent behavioral performance in mice. To investigate these effects, C57BL/6J mice underwent whisker deprivation from P0 to P14 and were subsequently assessed at 5 weeks of age using a battery of tests: motor skills were evaluated using open field test; emotional behavior was evaluated using a series of anxiety- and depression-related behavioral tests; cognitive function was examined via novel location and object recognition tests; and social interactions were analyzed using three-chamber social interaction test. Results show that early-life whisker deprivation impairs social discrimination, as evidenced by reduced interaction preference for novel mice, while not impacting general motor abilities, cognitive performance in novel object and location recognition, or anxiety- and depression-related behaviors during adolescence. The treatment effects were consistent across sexes, with no significant differences observed between control and experimental groups within each sex. These findings contribute to a comprehensive understanding of the behavioral impacts during adolescence resulting from early-life whisker deprivation and provide valuable criteria for selecting appropriate whisker deprivation models in future research.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Feiyan Shen
- School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zexun Yu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Mingyue Wang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xuruoqi Zheng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jiali Chen
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Linghui Zeng
- School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
2
|
Lucindo MSS, Albuquerque ALS, Pereira KA, Salgado KDCB, Oliveira LAM, Engel DF, Nogueira KOPC. Chronic cannabidiol administration modulates depressive and cognitive alterations induced by social isolation in male mice. Behav Brain Res 2025; 480:115408. [PMID: 39725273 DOI: 10.1016/j.bbr.2024.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, is known for its potential therapeutic effects on central nervous system (CNS) disorders. This study investigates the effects of chronic CBD administration on depressive and cognitive alterations induced by social isolation in male C57BL/6 mice. The experimental design involved adult mice subjected to either group housing or 12 weeks of social isolation. Behavioral assessments, including the sucrose preference test, open field test, light/dark box, novel object recognition, and tail suspension test, were performed to evaluate the impact of CBD on emotional and cognitive alterations. Additionally, hippocampal gene expression for cannabinoid type 1 receptors (CB1R), serotonin type 1 A receptors (5HT1AR), and brain-derived neurotrophic factor (BDNF) were analyzed. Results indicate that CBD mitigated anhedonia in isolated mice and reduced immobility episodes in the TST. However, CBD did not exert significant anxiolytic effects and unexpectedly induced anxiety-like behavior in group-housed mice. The study also revealed that social isolation impaired recognition memory and reduced BDNF expression, while CBD treatment protected memory in isolated mice. These findings suggest that CBD has potential antidepressant and neuroprotective effects in social isolation-induced depressive models, although its anxiogenic effects in non-stressed mice warrant further investigation.
Collapse
MESH Headings
- Animals
- Cannabidiol/pharmacology
- Cannabidiol/administration & dosage
- Male
- Social Isolation
- Brain-Derived Neurotrophic Factor/metabolism
- Mice, Inbred C57BL
- Depression/drug therapy
- Mice
- Hippocampus/drug effects
- Hippocampus/metabolism
- Anxiety/drug therapy
- Anhedonia/drug effects
- Disease Models, Animal
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Cognitive Dysfunction/drug therapy
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Behavior, Animal/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Cognition/drug effects
Collapse
Affiliation(s)
- Marcel S S Lucindo
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana L S Albuquerque
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Kenzawin A Pereira
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Karen Del Carmen Barboza Salgado
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Laser A M Oliveira
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Katiane O P C Nogueira
- Department of Biological Sciences, Laboratory of Neurobiology and Biomaterials (LNBio), Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
3
|
Dursun I, Korkmaz ND, Firtina S, Erkoyuncu MS, Akbas F, Elibol B. Exploring epigenetic modification of the stress-related FKBP5 gene in mice exposed to alcohol during early postnatal development. Alcohol 2025; 123:11-17. [PMID: 39245355 DOI: 10.1016/j.alcohol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Early developmental exposure to alcohol has been implicated in adverse effects on the brain, often associated with the onset of neurodevelopmental disorders. Moreover, maternal alcohol consumption during pregnancy has been linked to the manifestation of mental health disorders, such as depression and anxiety, in subsequent generations. These mood disturbances may be attributed to alterations in protein expressions related to depression and anxiety within the hippocampus. While the precise mechanisms remain elusive, it is likely that pre- and postnatal exposure to alcohol induces changes in hippocampus, potentially through epigenetic modifications. The FKBP5 gene, known to modulate the stress response, is particularly relevant in this context. We postulate that alcohol-induced methylation of the FKBP5 gene disrupts HPA axis function, thereby prompting individuals to anxiety-like and depressive-like behaviors. To investigate this hypothesis, female C57BL/6 pups were subjected to early alcohol exposure via intubation with ethanol mixed in artificial milk from Postnatal Day 3 to Day 20. The intubation control pups were subjected to the same procedures without ethanol or milk, and a non-intubated control group included. Anxiety-like and depressive-like behaviors were assessed using the open field test, plus maze test, forced swim test, and tail suspension test when the pups reached 3 months of age. For epigenetic analysis of the FKBP5 gene, genomic DNA was isolated from hippocampal tissues and subjected to bisulfite conversion to distinguish methylated and unmethylated cytosines. Then, methylation-specific PCR was performed to assess methylation levels. Pups exposed to early postnatal alcohol exhibited increased levels of depression-like behavior and susceptibility to anxiety-like behavior during adolescence, as verified by behavioral assessments. Methylation profiling revealed higher rates of methylation within the stress-associated gene FKBP5 in both the early postnatal alcohol-exposed cohort (13.82%) and the intubation control group (3.93%), in contrast to the control cohort devoid of stress or alcohol exposure. These findings suggest a potential epigenetic mechanism underlying the observed behavioral alterations, implicating FKBP5 methylation as a candidate mediator of the increased vulnerability to mood disorders following early postnatal alcohol exposure.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Nur Damla Korkmaz
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Firtina
- Department of Medical Genetics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muhammed Salih Erkoyuncu
- Department of Neuroscience, Graduate School of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
4
|
Khatsko SL, Zhdanov AV, Kravchenko DV, Nikiforova EV, Salimova NA, Kotova MM, Galstyan DS, de Abreu MS, Yang L, Stewart AM, Kalueff AV. The light-dark forced swim test for simultaneous assessment of behavioral 'despair' and anxiety-like behavior in female mice. Behav Brain Res 2025; 484:115492. [PMID: 39986616 DOI: 10.1016/j.bbr.2025.115492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Animal models are a valuable tool to study anxiety and depression, two common and severely debilitating brain disorders. Probing them experimentally typically relies on various rodent behavioral assays, such as the light-dark and the forced swim tests. However, the growing importance of testing novel CNS concepts and neuroactive drugs calls for further refinement of existing behavioral tests, as well as the development of new assays. One research strategy in this direction involves combining principles of several tests into one 'hybrid' assay. Using this approach, here we develop a novel 'hybrid' mouse assay, the light-dark forced swim test, combining features of the two conventional assays to simultaneously assess animal anxiety-like (light-dark preference during swimming) and depression-like behaviors ('despair'-like immobility). Overall, the anxiety-like dark preference of female white outbred mice in this test is sensitive to physiological anxiogenic stressors (daily swimming or administration of prednisolone and dexamethasone), whereas clinically active antidepressants (fluoxetine and paroxetine) reduce despair-like immobility in this test. Collectively, these findings suggest that this novel assay may simultaneously evaluate anxiety- and depression-like behaviors, and can be applied to testing neuroactive drugs.
Collapse
Affiliation(s)
- Sergey L Khatsko
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Alexander V Zhdanov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Daria V Kravchenko
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Nikiforova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Natalya A Salimova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Maria M Kotova
- Neuroscience Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Longen Yang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | | | - Allan V Kalueff
- Neuroscience Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
5
|
Wu Z, Yin Y, Liu R, Li X, Wang Z, Wu C, Tan J, Fu Z, Song C, Lee Wong N, Peng X, Lai S, Cui J, Han M, Peng Y, Sun Y, Wu L, Adzic M, Zeng L, Zhang H, Yau SY, Chen G. Chronic treatment of mixture of two iridoids proportional to prescriptional dose of Yueju improves hippocampal PACAP-related neuroinflammation and neuroplasticity signaling in the LPS-induced depression model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119031. [PMID: 39522842 DOI: 10.1016/j.jep.2024.119031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GP) and shanzhiside methyl ester (SM) are the two important bioactive compounds in the classical traditional Chinese herbal medicine Yueju Pill, which is currently used as an over-the-counter (OTC) medicine in China. Yueju has been demonstrated with antidepressant-like effects with the prescriptional dose. As GP and SM both have antidepressant potential, the synergism of them could be crucial to the function of Yueju. OBJECTIVES The neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP) has been implicated in the onset of antidepressant-like response. Here we investigated the synergism of the chronic treatment with GP and SM, at proportional doses to Yueju, on antidepressant-like effects, and underlying mechanism of PACAP-related signaling in a neuroinflammation-based depression model. MATERIALS AND METHODS Depression-related behaviors were tested in the lipopolysaccharide (LPS)-induced depression model. The molecular signaling of neuroinflammation and neuroplasticity was investigated using Western blot analysis, immunofluorescence and pharmacological inhibition of mTOR signaling. RESULTS Chronic treatment of GP and SM (GS) at the dose which is proportional to the prescriptional dose of Yueju synergistically elicited antidepressant-like effects. Chronic treatment of the GS or the conventional antidepressant fluoxetine (FLX) showed antidepressant-like effects in LPS-injected mice. In vitro analysis indicated the synergism of GS on PACAP expression. In the hippocampus of LPS-injected mice, both GS and FLX enhanced PACAP expression, downregulated the inflammatory signaling of Iba-1/NF-кB/IL-1β and NLRP3, and upregulated the neuroplasticity signaling of mTOR-BDNF/PSD95. Additionally, both treatments reduced microglia activation indicated by Iba-1 immunofluorescent staining. Rapamycin, an mTOR inhibitor, blunted the antidepressant-like effects and the upregulation of BDNF expression induced by chronic GS. CONCLUSION The antidepressant-like effects elicited by chronic fluoxetine or by synergistic doses of GS were involved in the upregulation of hippocampal PACAP levels, in association with ameliorated neuroinflammation and neuroplasticity signaling in LPS-injected mice. GS synergism may play a key part in the antidepressant-like effects of the prescriptional dose of Yueju.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Changyu Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Jingwen Tan
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Zhenzhen Fu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Chenghao Song
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Nga Lee Wong
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Xiangyi Peng
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Shixiong Lai
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Jinshuai Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Mingzhi Han
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Yuhan Peng
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China.
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Aziziha H, Hassanpour S, Zendehdel M. Lutein Exerts Antioxidant and Neuroprotective Role on Schizophrenia-Like Behaviours in Mice. Int J Dev Neurosci 2025; 85:e10407. [PMID: 39723598 DOI: 10.1002/jdn.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Schizophrenia is an esteemed neuropsychiatric condition delineated by the manifestation which role of the N-methyl-D-aspartate receptor (NMDAR) is important. Lutein administration exhibits protective effects via NMDA receptors. Thus, the main goal of this research was to investigate how lutein can possibly act as an antioxidant and provide protection for the brain against schizophrenia-like behaviours in mice. In total, 24 male mice were divided into four experimental groups: control, ketamine (20 mg/kg, i.p), lutein (10 mg/kg, i.p) and a mix of ketamine (20 mg/kg, i.p) and lutein (10 mg/kg, i.p). Lutein was given to the mice for 30 days, while ketamine was given from Days 16 to 30 to create a model of schizophrenia in the animals. After giving drugs, schizophrenia-like behaviours were evaluated with novel object recognition test (NORT), tail suspension test (TST), forced swimming test (FST) and open field tests. Furthermore, the amounts of brain malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were assessed. The findings showed a noteworthy decrease in the crossings during the open field test and increase in immobility duration in the TST and FST as a result of ketamine administration (p < 0.05). Prior administration of lutein showed a decrease in the detrimental effects of ketamine on the open field assay, along with a reduction in immobility duration in the TST and FST experiments (p < 0.05). Administration of ketamine caused a notable reduction in the discrimination index, while pretreatment with lutein was associated with a rise in the discrimination index (p < 0.05). Furthermore, the administration of ketamine significantly increased the levels of MDA in both cortical and subcortical regions, which were then reduced by lutein pretreatment (p < 0.05). Moreover, ketamine use led to a significant decrease in tissue SOD, GPx and CAT levels in both cortical and subcortical brain regions in mice (p < 0.05). Nonetheless, lutein pretreatment significantly enhanced SOD, GPx and CAT levels in cortical and subcortical regions (p < 0.05). These results indicate that lutein may have protective effects on the brain to improve behavioural problems.
Collapse
Affiliation(s)
- Helia Aziziha
- Graduate Student, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Chen J, Wei Y, Li N, Pi C, Zhao W, Zhong Y, Li W, Shen H, Yang Y, Zheng W, Jiang J, Liu Z, Liu K, Zhao L. Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo. Mol Neurobiol 2025; 62:2124-2147. [PMID: 39080204 DOI: 10.1007/s12035-024-04363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 01/28/2025]
Abstract
The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.
Collapse
Affiliation(s)
- Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Zerong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000, Sichuan, China.
| | - Kezhi Liu
- Department of Psychiatry, Fundamental and Clinical Research On Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
8
|
Zhang H, Gao D, Hu M, Zhou W, Han M, Sun Y, Zhang Y, Wang J, Gao M. Evaluation of a user-friendly CSDS cage apparatus for studying depressive-like behaviors in rodents. Animal Model Exp Med 2025; 8:179-186. [PMID: 39627885 PMCID: PMC11798728 DOI: 10.1002/ame2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Previously, a chronic social defeat stress (CSDS) model has been widely-adopted for assessing depressive-like behaviors in animals. However, there is still room for improvement in the CSDS model to safeguard study accuracy and the welfare of lab rodents. Our study team developed a novel, standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability. METHODS An innovative CSDS cage apparatus and water bottle was designed. To evaluate the effectiveness of the newly developed tools, a variety of animal models, including the tail suspension test (TST), sucrose preference test, forced swimming test (FST), novelty-suppressed feeding test, female urine sniffing test, and open field test (OFT), were adopted to assess depressive-like behaviors in mice. Fluoxetine treatment was also administered to observe the reversal effect, as part of the validation. RESULTS The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice. Significant reductions in sucrose preference and urine sniffing time were observed, while the OFT revealed decreased central zone total distance, residence time, and frequency of entry. Moreover, increased immobility was found in the FST and TST. Fluoxetine treatment was found to successfully reverse the modeling effect. CONCLUSION The CSDS cage apparatus was validated for enhanced usability and addressed the previous challenges of water bottle leakage and lab rodent welfare issues. The consistent results from multiple behavioral tests also supported real-world application of the apparatus, offering researchers a promising alternative to conventional rodent cages.
Collapse
Affiliation(s)
- Hao Zhang
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Dongmei Gao
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Minghu Hu
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Wanqing Zhou
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Muxuan Han
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Ya Sun
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Jieqiong Wang
- Social Cooperation and Achievement Transformation DepartmentShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Mingzhou Gao
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| |
Collapse
|
9
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
10
|
Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced depression and anxiety behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611461. [PMID: 39314481 PMCID: PMC11418943 DOI: 10.1101/2024.09.06.611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles pretreatment to inhibit lipopolysaccharide (LPS)-induced pathological inflammation and synapse destruction and depressive and anxiety behavior in mice. Both wild-type (WT) B6SJLF1/J and 5XFAD adult mice (5-10 months old) were pretreated with intranasal dantrolene nanoparticles (dantrolene: 5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression, anxiety and side effects were performed 24 hours after a one-time LPS injection. Biomarkers for pyroptosis-related inflammation cytokines (IL-1β and IL-18) in blood and brains were measured using enzyme-linked immunosorbent assay (ELISA) and immunoblotting, respectively. The changes of primary proteins activation inflammatory pyroptosis (NLRP3: NLR family pyrin domain containing 3, Caspase-1, N-GSDMD: N terminal protein gasdermin D) and synapse proteins (PSD-95 and synpatin-1) in brains were measured using immunoblotting. Intranasal dantrolene nanoparticles robustly inhibited LPS-induced depression and anxiety behavior in both WT and 5XFAD mice, without obvious side effects. Intranasal dantrolene nanoparticles significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood and synapse loss in the brain. Intranasal dantrolene nanoparticles trended to inhibit LPS-induced elevation of IL1β and IL-18 and the pyroptosis activation proteins in the brain in both type of mice. In conclusion, intranasal dantrolene nanoparticles demonstrated neuroprotection against inflammation mediated depression and anxiety behaviors and should be studied furthermore as a future effective drug treatment of major depression disorder or anxiety psychiatric disorder, especially in AD patients.
Collapse
|
11
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Oqal M, Abudalo R, Hatahet T. Scopoletin mitigates maternal separation-induced anxiety-like and depression-like behaviors in male mice through modulation of the Sirt1/NF-κB pathway. Psychopharmacology (Berl) 2024; 241:2347-2362. [PMID: 38886190 DOI: 10.1007/s00213-024-06639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE Early-life maternal separation can lead to anxiety-like and depression-like behaviors in mice reared under maternal separation conditions. Scopoletin, a compound with anti-inflammatory and antidepressant properties, may offer therapeutic benefits, but its effectiveness against behaviors induced by maternal separation during adulthood remains unexplored. OBJECTIVES This study investigates scopoletin's efficacy in alleviating anxiety-like and depression-like phenotypes in male mice subjected to early-life maternal separation. METHODS Male C57BL/6J mice experienced daily maternal separation for 4 h from postnatal day (PND) 2 to 21. From postnatal day 61(PND 61), scopoletin was administered intraperitoneally at 20 mg/kg/day for four weeks. Behavioral and biochemical assessments were conducted at postnatal day 95 (PND 95). RESULTS Maternally separated mice displayed marked anxiety-like and depression-like behaviors, evident in behavioral tests like the open field and elevated plus maze. These mice also showed increased immobility in the forced swimming and tail suspension tests. Biochemically, there were elevated levels of IL-1β, IL-6, and TNF-α in the hippocampus, with a decrease in Sirt1 and upregulation in NF-κB p65 expression. Scopoletin treatment significantly mitigated these behavioral abnormalities, normalizing both anxiety-like and depression-like behaviors. Correspondingly, it reduced the levels of pro-inflammatory cytokines and reinstated the expression of Sirt1 and NF-κB p65. CONCLUSIONS Scopoletin effectively reverses the adverse behavioral and biochemical effects induced by early-life maternal separation in male mice, suggesting its potential as a therapeutic agent for treating anxiety-like and depression-like behaviors. Modulation of neuroinflammatory pathways and the Sirt1/NF-κB signaling axis is one possible mechanism.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, College of Medicine, Irbid, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Taher Hatahet
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
12
|
Zhang H, Gao T, Zhao F, Wang N, Li Z, Qin X, Liu Y, Wang R. Integrated gut microbiome and metabolomic analyses elucidate the therapeutic mechanisms of Suanzaoren decoction in insomnia and depression models. Front Neurosci 2024; 18:1459141. [PMID: 39464422 PMCID: PMC11502468 DOI: 10.3389/fnins.2024.1459141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Insomnia and depression are psychiatric disorders linked to substantial health burdens. The gut microbiome and metabolomic pathways are increasingly recognized as key contributors to these conditions' pathophysiology. Suanzaoren Decoction (SZRD), a traditional Chinese herbal formulation, has demonstrated significant therapeutic benefits for both insomnia and depression. This study aims to elucidate the mechanistic effects of SZRD on insomnia and depression by integrating gut microbiome and metabolomic analyses and to assess the differential impacts of SZRD dosages. Using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), we identified 66 chemical constituents within SZRD. Behavioral assays indicated that low-dose SZRD (LSZRD) significantly ameliorated insomnia symptoms in rat models, whereas high-dose SZRD (HSZRD) markedly improved depressive behaviors. 16S rRNA sequencing revealed that SZRD modulated gut microbiome dysbiosis induced by insomnia and depression, characterized by an increased abundance of short-chain fatty acid (SCFA)-producing genera. Metabolomic profiling demonstrated reduced plasma amino acid metabolites and disrupted γ-aminobutyric acid (GABA) and L-glutamic acid metabolism in the hippocampus of affected rats. SZRD administration restored fecal SCFA levels and ameliorated metabolic imbalances in both plasma and hippocampal tissues. These findings underscore the pivotal role of gut microbiome modulation and metabolic regulation in the therapeutic effects of SZRD, providing a scientific basis for its use in treating insomnia and depression.
Collapse
Affiliation(s)
- Hongxiong Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Taixiang Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng Zhao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhixuan Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ying Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
13
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Liu L, Hu Y, Shan Q, Li P, Ma T, Wang Y. VGLUT2 may improve cognitive function in depressed rats by protecting prefrontal cortex neurons. Front Behav Neurosci 2024; 18:1453161. [PMID: 39301432 PMCID: PMC11410701 DOI: 10.3389/fnbeh.2024.1453161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Objective Depression may be accompanied by cognitive impairment, but its pathogenesis remains unclear. This study aims to investigate the protective effects of fluoxetine on behavioral performance and prefrontal cortex neuronal damage in rats with depression-associated cognitive impairment, based on the observation of VGLUT2 protein expression. Methods Forty-five SPF-grade male SD rats were randomly divided into three groups (n = 15): normal control group (CON), depression group (DD), and fluoxetine group (DD + F). The CON group was reared normally, while the DD and DD + F groups underwent chronic unpredictable mild stress (CUMS) combined with social isolation to induce a depression-related cognitive dysfunction model. After modeling, the DD + F group was treated with fluoxetine (10 mg/kg, ig) for 14 days. Behavioral tests were performed to assess changes in mood, cognition, learning, and social abilities. Histopathological observations were made to examine pathological changes, neuronal apoptosis, ultrastructure, and dendritic spine density in the prefrontal cortex. The concentration, relative expression level, and mRNA expression of VGLUT2 protein were also measured. Finally, a correlation analysis was performed between the relative expression level and mRNA expression of VGLUT2 protein and the pathological changes in neurons. Results Compared to the CON group, the DD group exhibited decreased body weight, anhedonia, increased behavioral despair, reduced locomotor activity and spontaneous exploratory behavior, impaired spatial learning and memory, and decreased social interaction and social cognitive ability. Pathological damage was observed in the prefrontal cortex, with neuronal apoptosis, ultrastructural damage, and reduced neuroplasticity. The concentration, relative expression, and mRNA expression levels of VGLUT2 protein were decreased. Following fluoxetine intervention, the above behavioral phenotypes improved; pathological damage showed varying degrees of recovery; and the concentration, relative expression, and mRNA expression levels of VGLUT2 protein increased. Finally, there was a significant correlation between VGLUT2 protein expression and pathological changes in the prefrontal cortex. Conclusion After 28 days of CUMS combined with isolation rearing, rats exhibited impairments in mood, cognition, learning, and social abilities, with neuronal damage and decreased VGLUT2 protein levels in the prefrontal cortex. Following fluoxetine intervention, VGLUT2 protein expression increased, neuronal repair in the prefrontal cortex occurred, depressive-like behavior improved, and cognitive learning and social abilities were restored.
Collapse
Affiliation(s)
- Longfei Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yongxue Hu
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qing Shan
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianpei Ma
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiming Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Meng X, Xia Y, Liu M, Ning Y, Li H, Liu L, Liu J. A deep-learning-based threshold-free method for automated analysis of rodent behavior in the forced swim test and tail suspension test. J Neurosci Methods 2024; 409:110212. [PMID: 38960331 DOI: 10.1016/j.jneumeth.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST rely on manually setting the threshold for immobility, which is time-consuming and subjective. NEW METHOD We proposed a threshold-free method for automated analysis of mice in these tests using a Dual-Stream Activity Analysis Network (DSAAN). Specifically, this network extracted spatial information of mice using a limited number of video frames and combined it with temporal information extracted from differential feature maps to determine the mouse's state. To do so, we developed the Mouse FSTST dataset, which consisted of annotated video recordings of FST and TST. RESULTS By using DSAAN methods, we identify immobility states at accuracies of 92.51 % and 88.70 % for the TST and FST, respectively. The predicted immobility time from DSAAN is nicely correlated with a manual score, which indicates the reliability of the proposed method. Importantly, the DSAAN achieved over 80 % accuracy for both FST and TST by utilizing only 94 annotated images, suggesting that even a very limited training dataset can yield good performance in our model. COMPARISON WITH EXISTING METHOD(S) Compared with DBscorer and EthoVision XT, our method exhibits the highest Pearson correlation coefficient with manual annotation results on the Mouse FSTST dataset. CONCLUSIONS We established a powerful tool for analyzing depressive-like behavior independent of threshold, which is capable of freeing users from time-consuming manual analysis.
Collapse
Affiliation(s)
- Xuechun Meng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Yang Xia
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Mingqing Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Yuxing Ning
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Hongqi Li
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Ling Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, China.
| | - Ji Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, China.
| |
Collapse
|
17
|
Trunnell ER, Baines J, Farghali S, Jackson T, Jayne K, Smith R, Stibbe T. The need for guidance in antidepressant drug development: Revisiting the role of the forced swim test and tail suspension test. Regul Toxicol Pharmacol 2024; 151:105666. [PMID: 38942190 DOI: 10.1016/j.yrtph.2024.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Depressive disorders are one of the most common mental disorders globally and progress in treating these disorders has been hampered, in part, by a lack of suitable nonclinical efficacy tests. Two common tests used in nonclinical efficacy studies of antidepressants-the forced swim test (FST) and tail suspension test (TST)-have come under criticism in recent years for their inconsistency and lack of validity, yet they continue to be used in the pharmaceutical industry. In this review, we provide a rationale for why international pharmaceutical regulatory and guidance agencies should begin issuing direction on methods for non-clinical efficacy testing that traditionally use the FST and TST, particularly considering that some regulators, such as those in the U.S. and E.U., allow the authorization of clinical trials to proceed without requiring tests in animals. The area of antidepressant drug discovery represents an important opportunity for reducing the attrition of psychiatric drugs, harmonizing regulatory requirements, and reducing animal use. Specific recommendations for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) have been provided.
Collapse
Affiliation(s)
- Emily R Trunnell
- People for the Ethical Treatment of Animals (PETA) U.S., 1536 16th St. N.W., Washington, DC, 20036, USA.
| | - Julia Baines
- PETA U.K., Society Building, 8 All Saints Street, London, N1 9RL, UK
| | - Stephen Farghali
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave # 400, Washington, DC, 20016, USA.
| | - Tara Jackson
- New Zealand Anti-Vivisection Society, PO BOX 9387, Tower Junction, Christchurch, 8149, New Zealand.
| | - Kimberley Jayne
- PETA U.K., Society Building, 8 All Saints Street, London, N1 9RL, UK.
| | - Rachel Smith
- Animal-Free Science Advocacy, PO Box 15, Fitzroy Vic, 3065, Australia.
| | - Tina Stibbe
- PETA Deutschland e.V., Friolzheimer Strasse 3, 70499, Stuttgart, Germany.
| |
Collapse
|
18
|
Niazi NUK, Huang C, Yang Z, Zhang Y, Song C. Comparison between sub-chronic and chronic sleep deprivation-induced behavioral and neuroimmunological abnormalities in mice: Focusing on glial cell phenotype polarization. Behav Brain Res 2024; 470:115067. [PMID: 38795845 DOI: 10.1016/j.bbr.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Sleep disorders, depression, and Alzheimer's disease (AD) are extensively reported as comorbidity. Although neuroinflammation triggered by microglial phenotype M1 activation, leading to neurotransmitter dysfunction and Aβ aggregation, is considered as the leading cause of depression and AD, whether and how sub-chronic or chronic sleep deprivation (SD) contribute to the onset and development of these diseases remains unclear. METHODS Memory and depression-like behaviors were evaluated in both SDs, and then circadian markers, glial cell phenotype polarization, cytokines, depression-related neurotransmitters, and AD-related gene/protein expressions were measured by qRT-PCR, enzyme-linked immunosorbent assay, high-performance liquid chromatography, and western-blotting respectively. RESULTS Both SDs induced give-up behavior and anhedonia and increased circadian marker period circadian regulator 2 (PER2) expression, which were much worse in chronic than in the sub-chronic SD group, while brain and muscle ARNT-like protein-1 only decreased in the chronic-SD. Furthermore, increased microglial M1 and astrocyte A1 expression and proinflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α was observed in both SDs, which were more significant in chronic SD. Similarly, decreased norepinephrine and 5-hydroxytryptamine/5-hydroxyindoleacetic acid ratio were more significant, which corresponds to the worse depression-like behavior in chronic than sub-chronic-SD. With regard to AD, increased amyloid precursor protein (APP) and soluble (s)-APPβ and decreased sAPPα in both SDs were more significant in the chronic. However, sAPPα/sAPPβ ratio was only decreased in chronic SD. CONCLUSION These findings suggest that both SDs induce depression-like changes by increasing PER2, leading to neuroinflammation and neurotransmitter dysfunction. However, only chronic SD induced memory impairment likely due to severer circadian disruption, higher neuroinflammation, and dysregulation of APP metabolism.
Collapse
Affiliation(s)
- Nasar Ullah Khan Niazi
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chengyi Huang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Dongguan Seventh People's Hospital (Dongguan Mental Health Center), Dongguan, China.
| |
Collapse
|
19
|
Jing R, Zhang L, Li R, Yang Z, Song J, Wang Q, Cao N, Han G, Yin H. Milk-derived extracellular vesicles functionalized with anti-tumour necrosis factor-α nanobody and anti-microbial peptide alleviate ulcerative colitis in mice. J Extracell Vesicles 2024; 13:e12462. [PMID: 38840457 PMCID: PMC11154809 DOI: 10.1002/jev2.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Ulcerative colitis (UC) manifests clinically with chronic intestinal inflammation and microflora dysbiosis. Although biologics can effectively control inflammation, efficient delivery to the colon and colon epithelial cells remains challenging. Milk-derived extracellular vesicles (EV) show promise as an oral delivery tool, however, the ability to load biologics into EV presents challenges to therapeutic applications. Here, we demonstrate that fusing cell-penetrating peptide (TAT) to green fluorescent protein (GFP) enabled biologics loading into EV and protected against degradation in the gastrointestinal environment in vitro and in vivo after oral delivery. Oral administration of EV loaded with anti-tumour necrosis factor-α (TNF-α) nanobody (VHHm3F) (EVVHH) via TAT significantly reduced tissue TNF-α levels and alleviated pathologies in mice with acute UC, compared to VHH alone. In mice with chronic UC, simultaneously introducing VHH and an antimicrobial peptide LL37 into EV (EVLV), then administering orally improved intestinal barrier, inflammation and microbiota balance, resulted in relief of UC-induced depression and anxiety. Collectively, we demonstrated that oral delivery of EVLV effectively alleviated UC in mice and TAT efficiently loaded biologics into EV to confer protection from degradation in the gastrointestinal tract. This therapeutic strategy is promising for UC and is a simple and generalizable approach towards drug-loaded orally-administrable EV treatment for other diseases.
Collapse
Affiliation(s)
- Renwei Jing
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Leijie Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Ruibin Li
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Zhongqiu Yang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Jun Song
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Qian Wang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Nan Cao
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Basic Medical Sciences & School of Medical TechnologyTianjin Medical UniversityTianjinChina
- Department of Clinical LaboratoryTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
20
|
Zhao Y, Qin S, Yang Z, Lu Y, Ma Z, Ping X, Sun G, Pei L. Gastrodin ameliorates depressive-like behaviors via modulating gut microbiota in CUMS-induced mice. Behav Brain Res 2024; 465:114968. [PMID: 38521360 DOI: 10.1016/j.bbr.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Depression is a psychiatric disorder and the treatment of depression is an urgent problem that need to be solved. Gastrodin (GAS) is a Traditional Chinese Medicine from an orchid and is used for neurological diseases, including depressive disorders. METHODS To assess the effect of GAS on gut microbiota of depressive mice, we established a chronic unpredictable mild stress (CUMS)-induced mouse model, and GAS was administered to one group of the mice. Animal behavior experiments were used to detect depressive-like behaviors, and 16 S rRNA gene analysis was applied to detect the gut microbiota of each group. All raw sequences were deposited in the NCBI Sequence Read Archive under accession number SRP491061. RESULTS GAS treatment significantly improved depressive-like behaviors as well as the diversity and abundance of the gut microbiota. The depressive-like behaviors of the CUMS-GAS group were improved in different degrees compared with the CUMS group. The linear discriminant analysis (LDA) of the gut microbiota showed that the makeup of the gut microbiota in mice changed dramatically in the CUMS-GAS group, compared with the CUMS group, Bacteroides (LDA = 3.94, P < 0.05) were enriched in the CUMS-GAS group at the genus level. In comparison to the CUMS group, the CUMS-GAS group had a greater concentration numbers of Lactobacillus, Corynebacterium, Staphylococcus, Bacteroides, Psychrobacter, and Alistipes. CONCLUSION Our results suggested that GAS improved depressive-like behaviors in mice and impacted the microbial composition of the gut. Our research indicated that dysbiosis of the gut microbiota may be affected by GAS treatment, which improved depressive-like behaviors in the CUMS-induced mouse model of depression.
Collapse
Affiliation(s)
- Yanan Zhao
- Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Shaokun Qin
- Section of science and Education, The Second Affiliated Hospital of Hebei University of Chinese Medicine, Dingzhou, Hebei, PR China
| | - Zixian Yang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, PR China
| | - Zongmin Ma
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, PR China
| | - Xin Ping
- Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, PR China
| | - Guoqiang Sun
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, PR China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
21
|
Koketsu S, Matsubara K, Ueki Y, Shinohara Y, Inoue K, Murakami S, Ueki T. The defects of the hippocampal ripples and theta rhythm in depression, and the effects of physical exercise on their amelioration. Heliyon 2024; 10:e23738. [PMID: 38226277 PMCID: PMC10788462 DOI: 10.1016/j.heliyon.2023.e23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.
Collapse
Affiliation(s)
- Shinnosuke Koketsu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Physical Therapy, Nagoya Women's University Faculty of Medical Science, Nagoya, Aichi, 467-8610, Japan
| | - Kohki Matsubara
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Yamanashi University Graduate School of Medical Sciences, Chuo, Yamanashi, 409-3898, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Satona Murakami
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
22
|
Szopa A, Herbet M, Poleszak E, Serefko A, Czylkowska A, Piątkowska-Chmiel I, Kasperek K, Wróbel A, Prewencka P, Szewczyk B. Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound. Int J Mol Sci 2023; 24:14157. [PMID: 37762458 PMCID: PMC10531591 DOI: 10.3390/ijms241814157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The study aimed to evaluate the antidepressant-like effects of an imipramine-zinc (IMI-Zn) complex compound on mice and assess the level of oxidative stress parameters. The research also investigated whether the IMI-Zn complex showed superior antidepressant activity compared to individual treatments of both compounds at effective doses and their joint administration at subtherapeutic doses. The study was conducted on mice. Forced swim (FST), tail suspension (TST), and locomotor activity tests were used for behavioral studies. The results demonstrated the IMI-Zn complex's dose-dependent antidepressant potential when orally administered to mice. Its efficacy was similar to the separate administration of therapeutic doses of imipramine (IMI) and zinc (Zn) and their joint administration at subtherapeutic doses. Moreover, subjecting mice to acute stress did not significantly affect the activity of on glutathione peroxidase (GPX), glutathione reductase (GR), and total antioxidant status (TAS), possibly due to the short exposure time to the stress stimulus. By developing the IMI-Zn complex, it might be possible to simplify the treatment approach, potentially improving patient compliance by combining the therapeutic effects of both IMI and Zn within a single compound, thus addressing one of the contributing factors to non-compliance in depression therapy. The IMI-Zn complex could be a valuable strategy to optimize therapeutic outcomes and balance efficacy and tolerability.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Mariola Herbet
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland;
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Kamila Kasperek
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Paulina Prewencka
- Scientific Circle, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
23
|
Farkhakfar A, Hassanpour S, Zendehdel M. Resveratrol plays neuroprotective role on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Neurosci Lett 2023; 813:137436. [PMID: 37586559 DOI: 10.1016/j.neulet.2023.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
This study aimed to determine effects of the resveratrol on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Twenty-four male mice were allocated into four experimental groups as control, ketamine (20 mg/kg), resveratrol (80 mg/kg) and co-administration of the ketamine (20 mg/kg) + resveratrol (80 mg/kg). Mice were received resveratrol for 30 days and ketamine was used for an animal model of schizophrenia and was injected from days 16 to 30 of the study. After the drug administration was finished, schizophrenia-like behaviors were evaluated using object recognition test, tail suspension test, forced swimming test and open field test and brain malondialdehyde, glutathione peroxidase, superoxide dismutase and catalase levels were determined. According to the results, ketamine treatment significantly decreased body weight and pretreatment with resveratrol elevated body weight compared to ketamine group (P < 0.05). Ketamine treatment significantly decreased number of the cross in open field test and pretreatment with resveratrol improved i (P < 0.05). Immobility time in tail suspension and forced swimming tests increased in mice treated with ketamine (P < 0.05). Pretreatment with resveratrol diminished immobility time compared to ketamine group (P < 0.05). Ketamine significantly decreased memory deficits while pretreatment with resveratrol significantly reduced the memory deficits induced by ketamine (P < 0.05). Brain MDA increased in both cortical and sub-cortical area in ketamine treated mice while pretreatment with resveratrol decreased ketamine-induced elevation in MDA (P < 0.05). Ketamine significantly decreased brain SOD, GPx and CAT levels while pretreatment with resveratrol improved SOD, GPx and CAT levels (P < 0.05). Findings suggested resveratrol has neuroprotective effects against ketamine-induced behavioral deficits and oxidative damages.
Collapse
Affiliation(s)
- Alireza Farkhakfar
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
24
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
25
|
Huang F, Huang Q, Zheng L, Zhang W, Yang Q, Yang J, Wang Y, Wang Z, Li W, Zeng L, Li S. Effect of 40 Hz light flicker on behaviors of adult C57BL/6J mice. Brain Res 2023; 1814:148441. [PMID: 37271490 DOI: 10.1016/j.brainres.2023.148441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
40 Hz light flicker can activate multiple brain regions of wild-type mice. However, there are no systematic studies on the behavioral effects of 40 Hz light flicker on wild-type mice. Adult wild-type C57BL/6J mice were treated with 40 Hz light flicker (200 lx, 40 Hz, 1 h/day for 3 weeks) to evaluate its effects on several behaviors, including mood, locomotor activity, memory, social interaction, mechanical pain, and sense of smell. In the open field test, the elevated zero-maze test, forced swimming test, and tail suspension test, 40 Hz mice showed no anxiety and depression-like behaviors. In the rotarod test, no differences were found between the anti-fatigue ability and motor coordination ability. In memory-related tests, 40 Hz mice showed the short-term cognitive enhancement in the novel object recognition test. Interestingly, 40 Hz mice showed no enhanced the long-term memory performance in the contextual fear conditioning test, and tone-cued fear conditioning test. Besides, 40 Hz mice increased their exploration of social cues that were unfamiliar to them and differed significantly from their own experiences. In terms of sensory abilities, 40 Hz mice had unchanged pain sensitivity in the von Frey fiber test and significant enhancement in the olfactory ability in the food-seeking test. In conclusion, this 40 Hz light stimulation paradigm has high safety and can improve the specific behavioral ability, which provides a theoretical basis for the future use of 40 Hz light flicker as a disease prevention or treatment method.
Collapse
Affiliation(s)
- Fankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Leyan Zheng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Wenchong Zhang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qi Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yu Wang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Wang
- Zhejiang Qianjiahui Electric Appliance Equipment Co., Ltd, Wenling Taizhou City, Zhejiang, China
| | - Weiyun Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| | - Linghui Zeng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
26
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
27
|
He H, Qin Q, Xu F, Chen Y, Rao S, Wang C, Jiang X, Lu X, Xie C. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota-brain interactions in colitis. SCIENCE ADVANCES 2023; 9:eadf3887. [PMID: 37235662 PMCID: PMC10219598 DOI: 10.1126/sciadv.adf3887] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.
Collapse
Affiliation(s)
- Huan He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fang Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yitong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
28
|
Wei RM, Zhang YM, Feng YZ, Zhang KX, Zhang JY, Chen J, Luo BL, Li XY, Chen GH. Resveratrol ameliorates maternal separation-induced anxiety- and depression-like behaviors and reduces Sirt1-NF-kB signaling-mediated neuroinflammation. Front Behav Neurosci 2023; 17:1172091. [PMID: 37273278 PMCID: PMC10233157 DOI: 10.3389/fnbeh.2023.1172091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Maternal separation in early life has a detrimental effect on the physiological and biochemical functions of the brains of offspring and can lead to anxiety- and depression-like behaviors later in life. Resveratrol possesses a variety of pharmacological properties, including anti-inflammatory, anxiolytic, and anti-depressive effects. In rodents, resveratrol can attenuate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress, estrogen deficiency, and lipopolysaccharide. However, whether resveratrol administration during adolescence can counteract these behaviors when they result from maternal separation is unknown. In this study, male C57BL/6J mice were separated from their mothers for 4 h per day from postnatal day 2 (PND 2) to PND 21; starting on PND 61, resveratrol was administered intraperitoneally at 40 mg/(kg/day-1) for 4 weeks. At 3 months of age, anxiety and depression-like behaviors were assessed in the male offspring using a series of tasks consisting of an open field test, an elevated plus maze test, a forced swimming test, and a tail suspension test. The hippocampal levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were measured by ELISA, while those of sirtuin 1 (Sirt1) and nuclear factor kappa B (NF-κB) p65 were determined by western blotting and PCR. The results showed that maternal separation led to increased anxiety- and depression-like behaviors, enhanced the levels of pro-inflammatory cytokines, and downregulated the Sirt1/NF-κB signaling pathway in the male offspring; however, these effects could be reversed by treatment with resveratrol. Our findings suggested that resveratrol can ameliorate inflammation and anxiety- and depression-like behaviors induced by maternal separation via the activation of the Sirt1/NF-κB pathway.
Collapse
|
29
|
On the role of serotonin 5-HT 1A receptor in autistic-like behavior: сross talk of 5-HT and BDNF systems. Behav Brain Res 2023; 438:114168. [PMID: 36280010 DOI: 10.1016/j.bbr.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022]
Abstract
Autism spectrum disorders (ASDs) are some of the most common neurodevelopmental disorders; however, the mechanisms underlying ASDs are still poorly understood. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known as key players in brain and behavioral plasticity and interact with each other. 5-HT1A receptor is a principal regulator of the brain 5-HT system, which modulates normal and pathological behavior. Here we investigated effects of adeno-associated-virus-based 5-HT1A receptor overexpression in the hippocampus of BTBR mice (which are a model of autism) on various types of behavior and on the expression of 5-HT7 receptor, proBDNF, mature BDNF, and BDNF receptors (TrkB and p75NTR). The 5-HT1A receptor overexpression in BTBR mice reduced stereotyped behavior in the marble-burying test and extended the time spent in the center in the open field test. Meanwhile, this overexpression failed to affect social behavior in the three-chambered test, immobility time in the tail suspension test, locomotor activity in the open field test, and associative learning within the "operant wall" paradigm. The 5-HT1A receptor overexpression in the hippocampus raised hippocampal 5-HT7 receptor mRNA and protein levels. Additionally, the 5-HT1A receptor overexpression lowered both mRNA and protein levels of TrkB receptor but failed to affect proBDNF, mature BDNF, and p75NTR receptor expression in the hippocampus of BTBR mice. Thus, obtained results suggest the involvement of the 5-HT and BDNF systems' interaction mediated by 5-HT1A and TrkB receptors in the mechanisms underlying autistic-like behavior in BTBR mice.
Collapse
|