1
|
Lin HC, Chang SF, Su CL, Hu HC, Chiao DJ, Hsu YL, Lu HY, Lin CC, Shu PY, Kuo SC. Facile quantitative diagnostic testing for neutralizing antibodies against Chikungunya virus. BMC Infect Dis 2024; 24:1076. [PMID: 39350079 PMCID: PMC11440707 DOI: 10.1186/s12879-024-09973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Viral neutralization (NT) assays can be used to determine the immune status of patients or assess the potency of candidate vaccines or therapeutic monoclonal antibodies (mAbs). Focus reduction neutralization test (FRNT) is a conventional neutralization test (cVNT) with superior specificity for measurement of neutralizing antibodies against a specific virus. Unfortunately, the application of FRNT to the chikungunya virus (CHIKV) involves a highly pathogenic bio-agent requiring biosafety level 3 (BSL3) facilities, which inevitably imposes high costs and limits accessibility. In this study, we evaluated a safe surrogate virus neutralization test (sVNT) that uses novel CHIKV replicon particles (VRPs) expressing eGFP and luciferase (Luc) to enable the rapid detection and quantification of neutralizing activity in clinical human serum samples. METHODS This unmatched case-control validation study used serum samples from laboratory-confirmed cases of CHIKV (n = 19), dengue virus (DENV; n = 9), Japanese encephalitis virus (JEV; n = 5), and normal individuals (n = 20). We evaluated the effectiveness of sVNT, based on mosquito cell-derived CHIK VRPs (mos-CHIK VRPs), in detecting (eGFP) and quantifying (Luc) neutralizing activity, considering specificity, sensitivity, and reproducibility. We conducted correlation analysis between the proposed rapid method (20 h) versus FRNT assay (72 h). We also investigated the correlation between sVNT and FRNT in NT titrations in terms of Pearson's correlation coefficient (r) and sigmoidal curve fitting. RESULTS In NT screening assays, sVNT-eGFP screening achieved sensitivity and specificity of 100%. In quantitative neutralization assays, we observed a Pearson's correlation coefficient of 0.83 for NT50 values between sVNT-Luc and FRNT. CONCLUSIONS Facile VRP-based sVNT within 24 h proved highly reliable in the identification and quantification of neutralizing activity against CHIKV in clinical serum samples.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Chien-Ling Su
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Huai-Chin Hu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Hsuan-Ying Lu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan.
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan.
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
2
|
Duan H, Zhang E, Ren G, Cheng Y, Yang B, Liu L, Jolicoeur N, Hu H, Xu Y, Liu B. Exploring immune evasion of SARS-CoV-2 variants using a pseudotyped system. Heliyon 2024; 10:e29939. [PMID: 38699727 PMCID: PMC11063423 DOI: 10.1016/j.heliyon.2024.e29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.
Collapse
Affiliation(s)
- Haixiao Duan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ershuai Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ge Ren
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yining Cheng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Lirong Liu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | | | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
3
|
Zhai X, Li X, Veit M, Wang N, Wang Y, Merits A, Jiang Z, Qin Y, Zhang X, Qi K, Jiao H, He WT, Chen Y, Mao Y, Su S. LDLR is used as a cell entry receptor by multiple alphaviruses. Nat Commun 2024; 15:622. [PMID: 38245515 PMCID: PMC10799924 DOI: 10.1038/s41467-024-44872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoling Li
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Ningning Wang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Nooruse Street 1, 50411, Tartu, Estonia
| | - Zhiwen Jiang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Qin
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Zhang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kaili Qi
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Houqi Jiao
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wan-Ting He
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Mao
- School of Pharmaceutical Sciences and National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China.
| | - Shuo Su
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Sagay AS, Hsieh SC, Dai YC, Chang CA, Ogwuche J, Ige OO, Kahansim ML, Chaplin B, Imade G, Elujoba M, Paul M, Hamel DJ, Furuya H, Khoury R, Boaventura VS, de Moraes L, Kanki PJ, Wang WK. Chikungunya virus antepartum transmission and abnormal infant outcomes in Nigeria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.05.23293675. [PMID: 37609297 PMCID: PMC10441498 DOI: 10.1101/2023.08.05.23293675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chikungunya virus (CHIKV) has become a global public health concern since the reemergence of the Indian Ocean lineage and expansion of the Asian genotype. CHIKV infection causes acute febrile illness, rash, and arthralgia and during pregnancy may affect both mothers and infants. The mother-to-child transmission (MTCT) of CHIKV in Africa remains understudied. We screened 1006 pregnant women at two clinics in Nigeria between 2019 and 2022 and investigated the prevalence and MTCT of CHIKV. Of the 1006, 119 tested positive for CHIKV IgM, of which 36 underwent detailed laboratory tests. While none of the IgM reactive samples were RT-PCR positive, 14 symptomatic pregnant women were confirmed by CHIKV neutralization test. Twelve babies were followed with 8 normal and 4 abnormal outcomes, including stillbirth, cleft lip/palate with microcephaly, preterm delivery, polydactyly with sepsis and jaundice. CHIKV IgM testing identified 3 antepartum transmissions, further studies will determine its impact in antepartum infection.
Collapse
|
5
|
Hu L, Jiang J, Tang Y, Mei L, Wu L, Li L, Chen H, Long F, Xiao J, Peng T. A Pseudovirus-Based Entry Assay to Evaluate Neutralizing Activity against Respiratory Syncytial Virus. Viruses 2023; 15:1548. [PMID: 37515234 PMCID: PMC10386507 DOI: 10.3390/v15071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause life-threatening pneumonia and bronchiolitis, posing a significant threat to human health worldwide, especially to children and the elderly. Currently, there is no specific treatment for RSV infection. The most effective measures for preventing RSV infection are vaccines and prophylactic medications. However, not all population groups are eligible for the approved vaccines or antibody-based preventive medications. Therefore, there is an urgent need to develop novel vaccines and prophylactic drugs available for people of all ages. High-throughput assays that evaluate the efficacy of viral entry inhibitors or vaccine-induced neutralizing antibodies in blocking RSV entry are crucial for evaluating vaccine and prophylactic drug candidates. We developed an efficient entry assay using a lentiviral pseudovirus carrying the fusion (F) protein of type A or B RSV. In addition, the essential parameters were systematically optimized, including the number of transfected plasmids, storage conditions of the pseudovirus, cell types, cell numbers, virus inoculum, and time point of detection. Furthermore, the convalescent sera exhibited comparable inhibitory activity in this assay as in the authentic RSV virus neutralization assay. We established a robust pseudovirus-based entry assay for RSV, which holds excellent promise for studying entry mechanisms, evaluating viral entry inhibitors, and assessing vaccine-elicited neutralizing antibodies against RSV.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongzhou Chen
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
- Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio Island Laboratory, Guangzhou 510005, China
| |
Collapse
|
6
|
Lin HC, Chiao DJ, Shu PY, Lin HT, Hsiung CC, Lin CC, Kuo SC. Development of a Novel Chikungunya Virus-Like Replicon Particle for Rapid Quantification and Screening of Neutralizing Antibodies and Antivirals. Microbiol Spectr 2023; 11:e0485422. [PMID: 36856407 PMCID: PMC10101068 DOI: 10.1128/spectrum.04854-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Chikungunya fever is a mosquito-transmitted infectious disease that induces rash, myalgia, and persistent incapacitating arthralgia. At present, no vaccines or antiviral therapies specific to Chikungunya virus (CHIKV) infection have been approved, and research is currently restricted to biosafety level 3 containment. CHIKV-like replicon particles (VRPs) are single-cycle infectious particles containing viral structure proteins, as well as a defective genome to provide a safe surrogate for living CHIKV to facilitate the testing of vaccines and antivirals. However, inefficient RNA transfection and the potential emergence of the competent virus through recombination in mammalian cells limit VRP usability. This study describes a transfection-free system for the safe packaging of CHIK VRP with all necessary components via transduction of mosquito cell lines using a single baculovirus vector. We observed the release of substantial quantities of mosquito cell-derived CHIK VRP (mos-CHIK VRP) from baculovirus-transduced mosquito cell lines. The VRPs were shown to recapitulate viral replication and subgenomic dual reporter expression (enhanced green fluorescent protein [eGFP] and luciferase) in infected host cells. Interestingly, the rapid expression kinetics of the VRP-expressing luciferase reporter (6 h) makes it possible to use mos-CHIK VRPs for the rapid quantification of VRP infection. Treatment with antivirals (suramin or 6-azauridine) or neutralizing antibodies (monoclonal antibodies [MAbs] or patient sera) was shown to inhibit mos-CHIK VRP infection in a dose-dependent manner. Ease of manufacture, safety, scalability, and high throughput make mos-CHIK VRPs a highly valuable vehicle for the study of CHIKV biology, the detection of neutralizing (NT) antibody activity, and the screening of antivirals against CHIKV. IMPORTANCE This study proposes a transfection-free system that enables the safe packaging of CHIK VRPs with all necessary components via baculovirus transduction. Those mosquito cell-derived CHIK VRP (mos-CHIK VRPs) were shown to recapitulate viral replication and subgenomic dual reporter (enhanced green fluorescent protein [eGFP] and luciferase) expression in infected host cells. Rapid expression kinetics of the VRP-expressing luciferase reporter (within hours) opens the door to using mos-CHIK VRPs for the rapid quantification of neutralizing antibody and antiviral activity against CHIKV. To the best of our knowledge, this is the first study to report a mosquito cell-derived alphavirus VRP system. Note that this system could also be applied to other arboviruses to model the earliest event in arboviral infection in vertebrates.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chu Hsiung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|