1
|
Yuan J, Zhu Z, Zhang P, Ashrafizadeh M, Abd El-Aty AM, Hacımüftüoğlu A, Linnebacher CS, Linnebacher M, Sethi G, Gong P, Zhang X. SKP2 promotes the metastasis of pancreatic ductal adenocarcinoma by suppressing TRIM21-mediated PSPC1 degradation. Cancer Lett 2024; 587:216733. [PMID: 38360141 DOI: 10.1016/j.canlet.2024.216733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - Zeyao Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Christina Susanne Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
3
|
Lemster AL, Weingart A, Bottner J, Perner S, Sailer V, Offermann A, Kirfel J. Elevated PSPC1 and KDM5C expression indicates poor prognosis in prostate cancer. Hum Pathol 2023; 138:1-11. [PMID: 37209920 DOI: 10.1016/j.humpath.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Justus Bottner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Sven Perner
- MVZ HPH Institute of Pathology and Hematology, GmbH, 22547, Hamburg, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany.
| |
Collapse
|
4
|
Im JY, Kang MJ, Kim BK, Won M. DDIAS, DNA damage-induced apoptosis suppressor, is a potential therapeutic target in cancer. Exp Mol Med 2023:10.1038/s12276-023-00974-6. [PMID: 37121974 DOI: 10.1038/s12276-023-00974-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/02/2023] Open
Abstract
Increasing evidence indicates that DNA damage-induced apoptosis suppressor (DDIAS) is an oncogenic protein that is highly expressed in a variety of cancers, including colorectal cancer, lung cancer, breast cancer, and hepatocellular carcinoma (HCC). The discovery of DDIAS as a novel therapeutic target and its role in human cancer biology is fascinating and noteworthy. Recent studies have shown that DDIAS is involved in tumorigenesis, metastasis, DNA repair and synthesis, and drug resistance and that it plays multiple roles with distinct binding partners in several human cancers. This review focuses on the function of DDIAS and its regulatory proteins in human cancer as potential targets for cancer therapy, as well as the development and future prospects of DDIAS inhibitors.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Zhan T, Cheng X, Zhu Q, Han Z, Zhu K, Tan J, Liu M, Chen W, Chen X, Chen X, Tian X, Huang X. LncRNA LOC105369504 inhibits tumor proliferation and metastasis in colorectal cancer by regulating PSPC1. Cell Death Discov 2023; 9:89. [PMID: 36894530 PMCID: PMC9998613 DOI: 10.1038/s41420-023-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is growing evidence that long non-coding RNAs (lncRNAs) are significant contributors to the epigenetic mechanisms implicated in the emergence, progression and metastasis of the colorectal cancer (CRC), but many remain underexplored. A novel lncRNA LOC105369504, was identified to be a potential functional lncRNA by microarray analysis. In CRC, the expression of LOC105369504 was markedly decreased and resulted in distinct variations in proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in vivo and in vitro. This study showed that LOC105369504 bound to the protein of paraspeckles compound 1 (PSPC1) directly and regulated its stability using the ubiquitin-proteasome pathway in CRC cells. The suppression of CRC by LOC105369504 could be reversed through PSPC1 overexpression.This study showed that in CRC, LOC105369504 was under-regulated and as a novel lncRNA, LOC105369504 exerted tumor suppressive activity to suppress the proliferation together with metastasis in CRC cells through the regulation of PSPC1. These results offer new perspectives on the lncRNA effect on the progression of CRC.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Qingxi Zhu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Kejing Zhu
- Department of Pharmacy, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Men Liu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaohong Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| | - Xiaodong Huang
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| |
Collapse
|
6
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
7
|
Estrogen-Inducible LncRNA BNAT1 Functions as a Modulator for Estrogen Receptor Signaling in Endocrine-Resistant Breast Cancer Cells. Cells 2022; 11:cells11223610. [PMID: 36429038 PMCID: PMC9688125 DOI: 10.3390/cells11223610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in RNA studies have revealed that functional long noncoding RNAs (lncRNAs) contribute to the biology of cancers. In breast cancer, estrogen receptor α (ERα) is an essential transcription factor that primarily promotes the growth of luminal-type cancer, although only a small number of lncRNAs are identified as direct ERα targets and modulators for ERα signaling. In this study, we performed RNA-sequencing for ER-positive breast cancer cells and identified a novel estrogen-inducible antisense RNA in the COL18A1 promoter region, named breast cancer natural antisense transcript 1 (BNAT1). In clinicopathological study, BNAT1 may have clinical relevance as a potential diagnostic factor for prognoses of ER-positive breast cancer patients based on an in situ hybridization study for breast cancer specimens. siRNA-mediated BNAT1 silencing significantly inhibited the in vitro and in vivo growth of tamoxifen-resistant ER-positive breast cancer cells. Notably, BNAT1 silencing repressed cell cycle progression whereas it promoted apoptosis. Microarray analysis revealed that BNAT1 silencing in estrogen-sensitive breast cancer cells repressed estrogen signaling. We showed that BNAT1 knockdown decreased ERα expression and repressed ERα transactivation. RNA immunoprecipitation showed that BNAT1 physically binds to ERα protein. In summary, BNAT1 would play a critical role in the biology of ER-positive breast cancer by modulating ERα-dependent transcription regulation. We consider that BNAT1 could be a potential molecular target for diagnostic and therapeutic options targeting luminal-type and endocrine-resistant breast cancer.
Collapse
|