1
|
Kamaly NA, Kamel AS, Sadik NA, Shahin NN. Milnacipran and Vanillin Alleviate Fibromyalgia-Associated Depression in Reserpine-Induced Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2025:10.1007/s12035-025-04723-w. [PMID: 39924579 DOI: 10.1007/s12035-025-04723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Fibromyalgia (FM) patients are highly susceptible to depression. Wnt/β-catenin signaling has shown a crucial role against depression in several studies. The FDA-approved FM drug, milnacipran (Miln), has shown antinociceptive potential against FM. Yet, no study has investigated its antidepressant potential in FM. Vanillin (Van), a well-known phytochemical often employed as flavoring agent, has been previously reported for its antidepressant and antinociceptive effects in several animal models, but has not been tested so far in FM. This study explored the antidepressant effect of Van and Miln in FM through investigating Wnt/β-catenin signaling. FM was induced in female Wistar rats by injecting reserpine (1 mg/kg/day s.c) for 3 days. Thereafter, animals received either Miln (30 mg/kg/day p.o) or Van (100 mg/kg/day p.o) for the subsequent 14 days. Results showed that both drugs demonstrated antidepressant effect in forced swimming test besides analgesic, and antiallodynic influences observed in Randall-Selitto, hot plate, cold allodynia, Von-Frey, and tail immersion tests. Biochemically, Miln and Van significantly enhanced serotonergic transmission in the hippocampus and upregulated the protein expression of the Wnt/GSK-3β/β-catenin signaling axis, including the downstream proteins, T cell factor, and dicer. This is followed by subsequent upregulation of the resilience micro ribonucleic acids (miRNAs) 124 and 135. Histopathological examinations corroborated the biochemical and molecular findings. Interestingly, these effects of Miln and Van were overturned via administration of the β-catenin inhibitor, XAV939 (0.1 mg/kg, i.p., daily). In conclusion, this study outlined the antidepressant aptitude of Miln and Van through activating Wnt/β-catenin signaling in the hippocampus in reserpine-induced FM.
Collapse
Affiliation(s)
- Nour A Kamaly
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | | | - Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Peterson IL, Scholpa NE, Bachtle KJ, Frye JB, Loppi SH, Thompson AD, Doyle K, Largent-Milnes TM, Schnellmann RG. Formoterol alters chemokine expression and ameliorates pain behaviors after moderate spinal cord injury in female mice. J Pharmacol Exp Ther 2025; 392:100015. [PMID: 40023611 DOI: 10.1124/jpet.124.002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Secondary spinal cord injury (SCI) is characterized by increased cytokines and chemokines at the site of injury that have been associated with the development of neuropathic pain. Nearly 80% of SCI patients report suffering from chronic pain, which is poorly managed with available analgesics. While treatment with the US Food and Drug Administration-approved β2-adrenergic receptor agonist formoterol improves various aspects of recovery post-SCI in vivo, its effects on cytokines, chemokines, and neuropathic pain remain unknown. Female mice were subjected to moderate (60 kilodynes [kdyn]) or severe (80 kdyn) SCI followed by daily treatment with vehicle or formoterol (0.3 mg/kg, i.p.) beginning 8 hours after injury. The expression of proinflammatory cytokines/chemokines, such as interferon gamma-induced protein 10, macrophage inflammatory protein 1a, monocyte chemoattractant protein 1, B-cell attracting chemokine 1, and nuclear factor kappa-light-chain-enhancer of activated B-cells, was increased in the injury site of vehicle-treated mice 24 hours post-SCI, which was ameliorated with formoterol treatment, regardless of injury severity. Thermal hyperalgesia and mechanical allodynia, as measured by Hargreaves infrared apparatus and von Frey filaments, respectively, were assessed prior to SCI and then weekly beginning 21 days post-injury (DPI). While all injured mice exhibited decreased withdrawal latency following thermal stimulation compared with baseline, formoterol treatment reduced this response ∼15% by 35 DPI. Vehicle-treated mice displayed significant mechanical allodynia, as evidenced by a 55% decrease in withdrawal threshold from baseline. In contrast, mice treated with formoterol maintained a consistent withdrawal time at all times tested. These data indicate that formoterol reduces inflammation post-SCI, likely contributing to mitigation of neuropathic pain and further supporting the therapeutic potential of this treatment strategy. SIGNIFICANCE STATEMENT: Chronic pain is a detrimental consequence of spinal cord injury (SCI). We show that treatment with the US Food and Drug Administration-approved drug formoterol after SCI decreases injury site proinflammatory chemo-/cytokines and alters markers of glial cell activation and infiltration. Additionally, formoterol treatment improves locomotor function and body composition, and decreases lesion volume. Finally, formoterol treatment decreased mechanical allodynia and thermal hyperalgesia post-SCI. These data are suggestive of the mechanism of formoterol-induced recovery, and further indicate its potential as a therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona.
| | - Kiara J Bachtle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jennifer B Frye
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Sanna H Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Kristian Doyle
- Southern Arizona VA Health Care System, Tucson, Arizona; Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | | | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona; Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona.
| |
Collapse
|
3
|
Seekins CA, Welborn AM, Schwarz AM, Streicher JM. Select terpenes from Cannabis sativa are antinociceptive in mouse models of post-operative pain and fibromyalgia via adenosine A 2a receptors. Pharmacol Rep 2025; 77:172-181. [PMID: 39663308 PMCID: PMC11974608 DOI: 10.1007/s43440-024-00687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Terpenes from Cannabis show promise for pain management. Our lab found that the terpenes geraniol, linalool, β-caryophyllene, and α-humulene relieve chemotherapy-induced peripheral neuropathy via Adenosine A2a receptors (A2aR). This suggests terpenes as potential non-opioid, non-cannabinoid therapeutics. In this study, we investigated post-operative and fibromyalgia pain, expanding potential terpene applications to different pain types. METHODS Male and female CD-1 mice had their baseline mechanical sensitivity measured via von Frey filaments and underwent either paw incision surgery or reserpine-induced fibromyalgia (0.32 mg/kg, sc). After pain was established, the mice received 200 mg/kg ip of a terpene, and their mechanical sensitivity was measured over three hours. To determine the potential mechanism of action, mice were given the A2aR antagonist istradefylline (3.2 mg/kg, ip) 10 min before terpene, with mechanical sensitivity measured after. Hot plate pain testing was performed as a control. RESULTS Terpene treatment caused time-dependent elevation of the mechanical thresholds of the mice from both pain models, strongest for geraniol, then linalool or α-humulene, indicating that these four terpenes are anti-nociceptive in post-surgical and fibromyalgia pain. Pretreatment with istradefylline blocked antinociception, suggesting the terpenes act via the A2aR in these pain models. Terpenes had no effect on hot plate latencies, ruling out non-specific motor effects. CONCLUSIONS These results demonstrate that the terpenes geraniol, linalool, β-caryophyllene, and α-humulene may be a viable medication for post-operative and fibromyalgia pain relief. Their mechanism of action via the A2aR furthers our knowledge of its importance in pain processing and as a target of terpene drugs.
Collapse
Affiliation(s)
- Caleb A Seekins
- Department of Pharmacology, College of Medicine, University of Arizona, LSN563, 1501 N. Campbell Ave, Box 245050, Tucson, AZ, 85724, USA
| | - Alyssa M Welborn
- Department of Pharmacology, College of Medicine, University of Arizona, LSN563, 1501 N. Campbell Ave, Box 245050, Tucson, AZ, 85724, USA
| | - Abigail M Schwarz
- Department of Pharmacology, College of Medicine, University of Arizona, LSN563, 1501 N. Campbell Ave, Box 245050, Tucson, AZ, 85724, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, LSN563, 1501 N. Campbell Ave, Box 245050, Tucson, AZ, 85724, USA.
- Comprehensive Center for Pain and Addiction, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Macionis V. Nociplastic pain: controversy of the concept. Korean J Pain 2025; 38:4-13. [PMID: 39743317 PMCID: PMC11695249 DOI: 10.3344/kjp.24257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Classically, pain can be of a nociceptive or neuropathic nature, which refers to non-neural or neural tissue lesions, respectively. Chronic pain in conditions such as migraine, fibromyalgia, and complex regional pain syndrome (CRPS), is thought to perpetuate without a noxious input. Pain in such patients can be assigned neither to the nociceptive nor neuropathic category. Therefore, a third pain descriptor, named "nociplastic pain", has been adopted by the International Association for the Study of Pain. The current controversy-focused narrative review updates littledebated aspects of the new pain concept. The most disputable feature of nociplastic pain is its autonomous persistence, i.e., existence without causative tissue damage, presumably because of a malfunction of pain pathways and processing. This contradicts the fact that nociplastic pain is accompanied by persistent central sensitization that has been shown to require a continuing noxious input, e.g ., nerve injury. Even if sensitization occurs without a lesion, e.g ., in psychogenic and emotional pain, peripheral stimulus is necessary to produce pain. A logical weakness of the concept is that the word "plastic" in biology refers to adaptation rather than to maladaptation. The pathophysiologic mechanism of nociplastic pain may, in fact, be associated with background conditions that elude diagnosis because of the limitations of current diagnostic means. Misapplication of the nociplastic pain category may weaken diagnostic alertness toward occult causes of pain. Possible diagnostic errors could be avoided by understanding that nociplastic pain is a mechanism of pain rather than a diagnosis. Clinical use of this pain descriptor deserves a wider critical discussion.
Collapse
|
5
|
Chen Y, Wang E, Sites BD, Cohen SP. Integrating mechanistic-based and classification-based concepts into perioperative pain management: an educational guide for acute pain physicians. Reg Anesth Pain Med 2024; 49:581-601. [PMID: 36707224 DOI: 10.1136/rapm-2022-104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Chronic pain begins with acute pain. Physicians tend to classify pain by duration (acute vs chronic) and mechanism (nociceptive, neuropathic and nociplastic). Although this taxonomy may facilitate diagnosis and documentation, such categories are to some degree arbitrary constructs, with significant overlap in terms of mechanisms and treatments. In clinical practice, there are myriad different definitions for chronic pain and a substantial portion of chronic pain involves mixed phenotypes. Classification of pain based on acuity and mechanisms informs management at all levels and constitutes a critical part of guidelines and treatment for chronic pain care. Yet specialty care is often siloed, with advances in understanding lagging years behind in some areas in which these developments should be at the forefront of clinical practice. For example, in perioperative pain management, enhanced recovery protocols are not standardized and tend to drive treatment without consideration of mechanisms, which in many cases may be incongruent with personalized medicine and mechanism-based treatment. In this educational document, we discuss mechanisms and classification of pain as it pertains to commonly performed surgical procedures. Our goal is to provide a clinical reference for the acute pain physician to facilitate pain management decision-making (both diagnosis and therapy) in the perioperative period.
Collapse
Affiliation(s)
- Yian Chen
- Anesthesiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Brian D Sites
- Anesthesiology and Orthopaedics, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Steven P Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation and Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Argenbright CM, Bertlesman AM, Russell IM, Greer TL, Peng YB, Fuchs PN. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024; 12:778. [PMID: 38672134 PMCID: PMC11048409 DOI: 10.3390/biomedicines12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alysia M. Bertlesman
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Izabella M. Russell
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Tracy L. Greer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Yuan B. Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Perry N. Fuchs
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
7
|
Matuska W, Matuska J, Skorupska E, Siwek M, Herrero P, Santafé MM. Can Myofascial Trigger Points Involve Nociplastic Pain? A Scoping Review on Animal Models. J Pain Res 2023; 16:3747-3758. [PMID: 38026452 PMCID: PMC10640827 DOI: 10.2147/jpr.s422885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Nociplastic pain is a non-specific, regional pain lasting more than three months, characterised by the onset of hypersensitivity, despite no clear evidence of tissue damage. It is a relatively new classified type of pain. As a result, there has not yet been much work describing its precise modelling. The mechanism of its formation needs to be clearly explained. Authors point out that the occurrence of myofascial trigger points (MTrPs) can lead to this type of pain as one possibility. This paper summarises the available literature on modelling nociplastic pain and MTrPs. It complies with studies describing animal model creation and presents the results of performed experiments. The literature search was conducted in December 2022 and included the following databases: PubMed, Scopus, and Web of Science. In this scoping review, six studies were included. Two described the creation of animal models of nociplastic pain, one adapted old models to nociplastic pain, and three described the modelling of MTrPs. This is the first paper pointing in the possible direction of detecting and studying the correlation between MTrPs and nociplastic pain in animal models. However, there is currently insufficient evidence to describe MTrPs as nociplastic, as few studies with animal models exist.
Collapse
Affiliation(s)
- Wiktoria Matuska
- Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznań, Poland
| | - Jakub Matuska
- Department of Physiotherapy, University of Medical Sciences, Poznań, Poland
| | - Elżbieta Skorupska
- Department of Physiotherapy, University of Medical Sciences, Poznań, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, University of Science and Technology, Bydgoszcz, Poland
| | - Pablo Herrero
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, Zaragoza, Spain
| | - Manel M Santafé
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira I Virgili University, Reus, Spain
| |
Collapse
|
8
|
Schmidt H, Blechschmidt V. [Nociplastic pain in research and practice : Overview of biopsychosocial principles, possibilities and difficulties]. Schmerz 2023:10.1007/s00482-023-00734-5. [PMID: 37432482 DOI: 10.1007/s00482-023-00734-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023]
Abstract
Traditionally, two mechanistic pain categories were distinguished: nociceptive and neuropathic pain. After the definitions of these two mechanistic descriptors were refined more precisely in the International Association for the Study of Pain (IASP) taxonomy in 2011, a large group of patients remained whose pain could not be assigned to either of the two categories. Nociplastic pain was therefore proposed as a third mechanistic descriptor in 2016. This review article presents the current state of the integration of nociplastic pain into research and clinical practice. In particular, the possibilities and difficulties of applying this concept are addressed from a human and animal experimental research perspective.
Collapse
Affiliation(s)
- Hannah Schmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland
| | - Vivian Blechschmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland.
| |
Collapse
|
9
|
Bułdyś K, Górnicki T, Kałka D, Szuster E, Biernikiewicz M, Markuszewski L, Sobieszczańska M. What Do We Know about Nociplastic Pain? Healthcare (Basel) 2023; 11:1794. [PMID: 37372912 PMCID: PMC10298569 DOI: 10.3390/healthcare11121794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nociplastic pain is a recently distinguished type of pain, distinct from neuropathic and nociceptive pain, and is well described in the literature. It is often mistaken for central sensitization. Pathophysiology has not been clearly established with regard to alteration of the concentration of spinal fluid elements, the structure of the white and gray matter of the brain, and psychological aspects. Many different diagnostic tools, i.e., the painDETECT and Douleur Neuropathique 4 questionnaires, have been developed to diagnose neuropathic pain, but they can also be applied for nociplastic pain; however, more standardized instruments are still needed in order to assess its occurrence and clinical presentation. Numerous studies have shown that nociplastic pain is present in many different diseases such as fibromyalgia, complex regional pain syndrome type 1, and irritable bowel syndrome. Current pharmacological and nonpharmacological treatments for nociceptive and neuropathic pain are not entirely suitable for treating nociplastic pain. There is an ongoing effort to establish the most efficient way to manage it. The significance of this field has led to several clinical trials being carried out in a short time. The aim of this narrative review was to discuss the currently available evidence on pathophysiology, associated diseases, treatment possibilities, and clinical trials. It is important that physicians widely discuss and acknowledge this relatively new concept in order to provide optimized pain control for patients.
Collapse
Affiliation(s)
- Kacper Bułdyś
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Dariusz Kałka
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Men’s Health Centre in Wrocław, 53-151 Wroclaw, Poland
| | - Ewa Szuster
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Leszek Markuszewski
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | | |
Collapse
|
10
|
Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology 2023; 31:1053-1067. [PMID: 37069462 DOI: 10.1007/s10787-023-01216-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Nociplastic pain is the third classification of pain as described by the International Association for the Study of Pain (IASP), in addition to the neuropathic and nociceptive pain classes. The main pathophysiological mechanism for developing nociplastic pain is central sensitization (CS) in which pain amplification and hypersensitivity occur. Fibromyalgia is the prototypical nociplastic pain disorder, characterized by allodynia and hyperalgesia. Much scientific data suggest that classical activation of microglia in the spinal cord mediates neuroinflammation which plays an essential role in developing CS. In this review article, we discuss the impact of microglia activation and M1/M2 polarization on developing neuroinflammation and nociplastic pain, besides the molecular mechanisms engaged in this process. In addition, we mention the impact of microglial modulators on M1/M2 microglial polarization that offers a novel therapeutic alternative for the management of nociplastic pain disorders. Illustrating the mechanisms underlying microglia activation in central sensitization and nociplastic pain. LPS lipopolysaccharide, TNF-α tumor necrosis factor-α, INF-γ Interferon gamma, ATP adenosine triphosphate, 49 P2Y12/13R purinergic P2Y 12/13 receptor, P2X4/7R purinergic P2X 4/7 receptor, SP Substance P, NK-1R Neurokinin 1 receptor, CCL2 CC motif ligand 2, CCR2 CC motif ligand 2 receptor, CSF-1 colony-stimulating factor 1, CSF-1R colony-stimulating factor 1 receptor, CX3CL1 CX3C motif ligand 1, CX3XR1 CX3C motif ligand 1 receptor, TLR toll-like receptor, MAPK mitogen-activated protein kinases, JNK jun N-terminal kinase, ERK extracellular signal-regulated kinase, iNOS Inducible nitric oxide synthase, IL-1β interleukin-1β, IL-6 interleukin-6, BDNF brain-derived neurotrophic factor, GABA γ-Aminobutyric acid, GABAR γ-Aminobutyric acid receptor, NMDAR N-methyl-D-aspartate receptor, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-onic acid receptor, IL-4 interleukin-4, IL-13 interleukin-13, IL-10 interleukin-10, Arg-1 Arginase 1, FGF fibroblast growth factor, GDNF glial cell-derived neurotrophic factor, IGF-1 insulin-like growth factor-1, NGF nerve growth factor, CD Cluster of differentiation.
Collapse
Affiliation(s)
- Ahd A Atta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
11
|
Marino Y, Arangia A, Cordaro M, Siracusa R, D’Amico R, Impellizzeri D, Cupi R, Peritore AF, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Analysis of the Influence of IL-6 and the Activation of the Jak/Stat3 Pathway in Fibromyalgia. Biomedicines 2023; 11:biomedicines11030792. [PMID: 36979771 PMCID: PMC10045851 DOI: 10.3390/biomedicines11030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Fibromyalgia is a medical condition that affects a small percentage of the population, with no known effective treatment. There is evidence to suggest that inflammation is a key factor in the nerve sensitization that characterizes the disorder. Therefore, this paper concentrates on the role of IL-6 in fibromyalgia and the related pain-like symptoms. Methods: This work aimed to evaluate Sprague–Dawley rats, which were injected for three consecutive days with 1 mg/kg of reserpine; IL-6-R Ab was intraperitoneally injected at 1.5 mg/kg seven days after the first reserpine injection. Behavioral analyses were conducted at the beginning of the experiment and at seven and twenty-one days from the first reserpine injection. At this timepoint, the animals were sacrificed, and tissues were collected for molecular and histological analysis. Results: Our data showed the analgesic effect of IL-6-R-Ab administration on mechanical allodynia and thermal hyperalgesia. Additionally, the reserpine + IL-6-R-Ab group showed a reduced expression of the pain-related mediators cFOS and NFG and reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines (Cxcl5, Cxcl10 and Cx3cl1). From the molecular point of view, the IL-6-R-Ab administration reduced the gp130 phosphorylation and the activation of the Jak/STAT3 pathway. Additionally, the IL-6-R Ab reduced the activation of neuroinflammatory cells. Conclusions: Our study showed that IL-6 plays a crucial role in fibromyalgia by triggering the Jak/STAT3 pathway, leading to an increase in chemokine levels and activating glial cells.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Cupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
12
|
Argenbright CM, Bland MK, Michener SL, Wilson JR, Fuchs PN. Pregabalin and hyperbaric oxygen therapy on pain thresholds and anxio-depressive behaviors in a preclinical fibromyalgia pain model. FRONTIERS IN PAIN RESEARCH 2023; 4:1097457. [PMID: 36937563 PMCID: PMC10014544 DOI: 10.3389/fpain.2023.1097457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Fibromyalgia (FM) is a chronic, widespread pain disorder generally of a non-inflammatory nature with many known affective and cognitive comorbidities. There is promise in the implementation of hyperbaric oxygen therapy (HBO2) for alleviating FM pain and comorbidities, despite no work investigating the efficacy of this treatment in prominent preclinical FM models. This project aimed to investigate the affective components, specifically anhedonia and anxiety, associated with an acidic saline model of FM in rats. We investigated the acidic saline model's ability to produce the sensory component of FM through reduced mechanical thresholds, as well as anxiety-like and avoidance behaviors through measures of open field and place escape/avoidance. We further investigated the use of pregabalin, a known FM therapeutic agent, in reducing negative sensory and affective measures within the model. Results revealed insignificant between-group differences for measures of anxiety, despite animals in the FM condition showing significantly reduced mechanical thresholds. Results further revealed that the acidic saline model was effective in increasing place escape/avoidance behavior among animals in the FM condition, with pregabalin reducing avoidance behaviors. In addition, we investigated the role of HBO2 [two 60-minute treatments at 2.0 ATA (atmospheres absolute)] in alleviating FM-like pain, anxiety, and anhedonia in the acidic saline model, utilizing mechanical paw withdrawal thresholds, open field, and sucrose preference measures. Results revealed that the acidic saline model produced reduced thresholds indicative of FM-like pain. Data did not provide support for the presence of anxio-depressive comorbidities associated with the FM model. HBO2 treatment did not significantly increase mechanical thresholds as expected. Future studies should seek to investigate the experimental circumstances within which the acidic saline model produces negative affect alongside hyperalgesia in order to contribute to the development of a multidimensional FM treatment methodology.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
- Correspondence: Cassie M. Argenbright
| | - Michelle K. Bland
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Sydney L. Michener
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Judy R. Wilson
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Perry N. Fuchs
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
13
|
Yang H, Zhang Y, Duan Q, Ni K, Jiao Y, Zhu J, Sun J, Zhang W, Ma Z. Dehydrocorydaline alleviates sleep deprivation-induced persistent postoperative pain in adolescent mice through inhibiting microglial P2Y 12 receptor expression in the spinal cord. Mol Pain 2023; 19:17448069231216234. [PMID: 37940138 DOI: 10.1177/17448069231216234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
During adolescence, a second period of central nervous system (CNS) plasticity that follows the fetal period, which involves sleep deprivation (SD), becomes apparent. SD during adolescence may result in abnormal development of neural circuits, causing imbalance in neuronal excitation and inhibition, which not only results in pain, but increases the chances of developing emotion disorders in adulthood, such as anxiety and depression. The quantity of surgeries during adolescence is also consistently on the rise, yet the impact and underlying mechanism of preoperative SD on postoperative pain remain unexplored. This study demonstrates that preoperative SD induces upregulation of the P2Y12 receptor, which is exclusively expressed on spinal microglia, and phosphorylation of its downstream signaling pathway p38Mitogen-activated protein/Nuclear transcription factor-κB (p38MAPK/NF-κB)in spinal microglia, thereby promoting microglia activation and microglial transformation into the proinflammatory M1 phenotype, resulting in increased expression of proinflammatory cytokines that exacerbate persisting postoperative incisional pain in adolescent mice. Both intrathecal minocycline (a microglia activation inhibitor) and MRS2395 (a P2Y12 receptor blocker) effectively suppressed microglial activation and proinflammatory cytokine expression. Interestingly, supplementation with dehydrocorydaline (DHC), an extract of Rhizoma Corydalis, inhibited the P2Y12/p38MAPK/NF-κB signaling pathway, microglia activation, and expression of pro-inflammatory cytokines in the model mice. Taken together, the results indicate that the P2Y12 receptor and microglial activation are important factors in persistent postoperative pain caused by preoperative SD in adolescent mice and that DHC has analgesic effects by acting on these targets.
Collapse
Affiliation(s)
- Haikou Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yufeng Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Qingling Duan
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Ni
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jixiang Zhu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Sun
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models. ACS Chem Neurosci 2022; 14:300-311. [PMID: 36584284 PMCID: PMC9853500 DOI: 10.1021/acschemneuro.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Eladia M. Peña-Méndez
- Department
of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de
La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Josef Havel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Lukáš Moráň
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,Research
Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic
| | - Lukáš Pečinka
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Anna Bagó-Mas
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Enrique Verdú
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Victoria Salvadó
- Department
of Chemistry, Faculty of Science, University
of Girona, 17071 Girona, Catalonia, Spain,
| | - Pere Boadas-Vaello
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,
| |
Collapse
|
15
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|