1
|
Eiro N, Fraile M, Escudero-Cernuda S, Sendon-Lago J, Gonzalez LO, Fernandez-Sánchez ML, Vizoso FJ. Synergistic effect of human uterine cervical mesenchymal stem cell secretome and paclitaxel on triple negative breast cancer. Stem Cell Res Ther 2024; 15:121. [PMID: 38664697 PMCID: PMC11044487 DOI: 10.1186/s13287-024-03717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative. METHODS In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC. RESULTS The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2. CONCLUSIONS In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Hospital de Jove Foundation, Gijón, Spain.
| | - Maria Fraile
- Research Unit, Hospital de Jove Foundation, Gijón, Spain
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Juan Sendon-Lago
- Experimental Biomedicine Centre (CEBEGA), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
2
|
McEvoy L, Cliff J, Carr DF, Jorgensen A, Lord R, Pirmohamed M. CYP3A genetic variation and taxane-induced peripheral neuropathy: a systematic review, meta-analysis, and candidate gene study. Front Pharmacol 2023; 14:1178421. [PMID: 37469869 PMCID: PMC10352989 DOI: 10.3389/fphar.2023.1178421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Taxane-induced peripheral neuropathy (TIPN) is an important cause of premature treatment cessation and dose-limitation in cancer therapy. It also reduces quality of life and survivorship in affected patients. Genetic polymorphisms in the CYP3A family have been investigated but the findings have been inconsistent and contradictory. Methods: A systematic review identified 12 pharmacogenetic studies investigating genetic variation in CYP3A4*22 and CYP3A5*3 and TIPN. In our candidate gene study, 288 eligible participants (211 taxane participants receiving docetaxel or paclitaxel, and 77 control participants receiving oxaliplatin) were successfully genotyped for CYP3A4*22 and CYP3A5*3. Genotyping data was transformed into a combined CYP3A metaboliser phenotype: Poor metabolisers, intermediate metabolisers and extensive metabolisers. Individual genotypes and combined CYP3A metaboliser phenotypes were assessed in relation to neurotoxicity, including by meta-analysis where possible. Results: In the systematic review, no significant association was found between CYP3A5*3 and TIPN in seven studies, with one study reporting a protective association. For CYP3A4*22, one study has reported an association with TIPN, while four other studies failed to show an association. Evaluation of our patient cohort showed that paclitaxel was found to be more neurotoxic than docetaxel (p < 0.001). Diabetes was also significantly associated with the development of TIPN. The candidate gene analysis showed no significant association between either SNP (CYP3A5*3 and CYP3A4*22) and the development of TIPN overall, or severe TIPN. Meta-analysis showed no association between these two variants and TIPN. Transformed into combined CYP3A metaboliser phenotypes, 30 taxane recipients were poor metabolisers, 159 were intermediate metabolisers, and 22 were extensive metabolisers. No significant association was observed between metaboliser status and case-control status. Summary: We have shown that the risk of peripheral neuropathy during taxane chemotherapy is greater in patients who have diabetes. CYP3A genotype or phenotype was not identified as a risk factor in either the candidate gene analysis or the systematic review/meta-analysis, although we cannot exclude the possibility of a minor contribution, which would require a larger sample size.
Collapse
Affiliation(s)
- Laurence McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Joanne Cliff
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Daniel F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Jorgensen
- Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Cordani N, Lisini D, Coccè V, Paglia G, Meanti R, Cerrito MG, Tettamanti P, Bonaffini L, Paino F, Alessandri G, Marcianti A, Giannì A, Villa C, Mauri M, Mologni L, Torsello A, Pessina A, Cazzaniga ME. Conditioned Medium of Mesenchymal Stromal Cells Loaded with Paclitaxel Is Effective in Preclinical Models of Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2023; 24:ijms24065864. [PMID: 36982938 PMCID: PMC10058623 DOI: 10.3390/ijms24065864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | - Pietro Tettamanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Luca Bonaffini
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Angela Marcianti
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Maxillo-Facial and Dental Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Mario Mauri
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
4
|
Dorand RD, Zheng NS, Agarwal R, Carroll RJ, Rubinstein SM, Winkfield KM, Wei WQ, Berlin J, Shu XO. Correlates of Taxane-Induced Neuropathy, an Electronic Health Record Based Observational Study. Cancers (Basel) 2023; 15:754. [PMID: 36765713 PMCID: PMC9952888 DOI: 10.3390/cancers15030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a common therapeutic complication affecting cancer patients' quality-of-life. We evaluated clinical characteristics, demographics, and lifestyle factors in association with CIPN following taxane treatment. METHODS Data were extracted from the electronic health record of 3387 patients diagnosed with a primary cancer and receiving taxane (i.e., paclitaxel or docetaxel) at Vanderbilt University Medical Center. Neuropathy was assessed via a validated computer algorithm. Univariate and multivariate regression models were applied to evaluate odds ratios (ORs) and 95% confidence intervals (CIs) of CIPN-associated factors. RESULTS Female sex (OR = 1.28, 95% CI = 1.01-1.62), high body-mass index (BMI) (OR = 1.31, 95% CI = 1.06-1.61 for overweight, and OR = 1.49, 95% CI = 1.21-1.83 for obesity), diabetes (OR = 1.66, 95% CI = 1.34-2.06), high mean taxane dose (OR = 1.05, 95% CI = 1.03-1.08 per 10 mg/m2), and more treatment cycles (1.12, 95% CI = 1.10-1.14) were positively associated with CIPN. Concurrent chemotherapy (OR = 0.74, 95% CI = 0.58-0.94) and concurrent radiotherapy (OR = 0.77, 95% CI = 0.59-1.00) were inversely associated with CIPN. Obesity and diabetes both had a stronger association with docetaxel CIPN compared to paclitaxel, although interaction was only significant for diabetes and taxane (p = 0.019). Increased BMI was associated with CIPN only among non-diabetic patients (OR:1.34 for overweight and 1.68 for obesity), while diabetes increased CIPN risk across all BMI strata (ORs were 2.65, 2.41, and 2.15 for normal weight, overweight, and obese, respectively) compared to normal-weight non-diabetic patients (p for interaction = 0.039). CONCLUSIONS Female sex, obesity, and diabetes are significantly associated with taxine-induced CIPN. Further research is needed to identify clinical and pharmacologic strategies to prevent and mitigate CIPN in at-risk patient populations.
Collapse
Affiliation(s)
- R. Dixon Dorand
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Neil S. Zheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Rajiv Agarwal
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Robert J. Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Samuel M. Rubinstein
- Division of Hematology, Department of Medicine, Lineberger Comprehensive Cancer Center at University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen M. Winkfield
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- Department of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| |
Collapse
|
5
|
Mortensen C, Andersen NE, Stage TB. Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling. Cancers (Basel) 2022; 14:cancers14163939. [PMID: 36010931 PMCID: PMC9406154 DOI: 10.3390/cancers14163939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neuropathy (CIPN) remains a clinical challenge with a considerable impact on the effective treatment of cancers and quality of life during and after concluding chemotherapy. Given the limited understanding of CIPN, there are no options for the treatment and prevention of CIPN. Decades of research with the unsuccessful translation of preclinical findings to clinical studies argue for the requirement of human model systems. This review focuses on the translational potential of human induced pluripotent stem cells (iPSCs) in CIPN research. We provide an overview of the current studies and discuss important aspects to improve the translation of in vitro findings. We identified distinct effects on the neurite network and cell viability upon exposure to different classes of chemotherapy. Our study revealed considerable variability between donors and between neurons of the central and peripheral nervous system. Translational success may be improved by including multiple iPSC donors with known clinical data and selecting clinically relevant concentrations. Abstract Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially serious adverse effect of a wide range of chemotherapeutics. The lack of understanding of the molecular mechanisms underlying CIPN limits the efficacy of chemotherapy and development of therapeutics for treatment and prevention of CIPN. Human induced pluripotent stem cells (iPSCs) have become an important tool to generate the cell types associated with CIPN symptoms in cancer patients. We reviewed the literature for iPSC-derived models that assessed neurotoxicity among chemotherapeutics associated with CIPN. Furthermore, we discuss the gaps in our current knowledge and provide guidance for selecting clinically relevant concentrations of chemotherapy for in vitro studies. Studies in iPSC-derived neurons revealed differential sensitivity towards mechanistically diverse chemotherapeutics associated with CIPN. Additionally, the sensitivity to chemotherapy was determined by donor background and whether the neurons had a central or peripheral nervous system identity. We propose to utilize clinically relevant concentrations that reflect the free, unbound fraction of chemotherapeutics in plasma in future studies. In conclusion, iPSC-derived sensory neurons are a valuable model to assess CIPN; however, studies in Schwann cells and motor neurons are warranted. The inclusion of multiple iPSC donors and concentrations of chemotherapy known to be achievable in patients can potentially improve translational success.
Collapse
Affiliation(s)
- Christina Mortensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Nanna Elman Andersen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department of Clinical Pharmacology, Odense University Hospital, DK-5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|