1
|
Taylor MA, Choi JUA, Muthuswamy S, Enriquez Martinez MA, Lauko J, Kijas AW, Rowan AE. Sensitive label free imaging of 3D cell models with minimal toxicity using confocal reflectance. Biomater Sci 2024; 12:5722-5727. [PMID: 39268757 DOI: 10.1039/d4bm00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Confocal reflectance imaging typically suffers from high background and poor sensitivity. We demonstrate sensitive and low-background reflectance imaging of cells encapsulated in transparent 3D hydrogels. Nanoscale cell morphology is visualized with sensitivity similar to confocal fluorescence, with low laser power, minimal specimen preparation, and reduced toxicity.
Collapse
Affiliation(s)
- Michael A Taylor
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Shiva Muthuswamy
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Marco A Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
2
|
Zhao F, Zhang M, Nizamoglu M, Kaper HJ, Brouwer LA, Borghuis T, Burgess JK, Harmsen MC, Sharma PK. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater 2024; 182:67-80. [PMID: 38750915 DOI: 10.1016/j.actbio.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Large skin injuries heal as scars. Stiffness gradually increases from normal skin to scar tissue (20x higher), due to excessive deposition and crosslinking of extracellular matrix (ECM) mostly produced by (myo)fibroblasts. Using a custom mold, skin-derived ECM hydrogels (dECM) were UV crosslinked after diffusion of ruthenium (Ru) to produce a Ru-dECM gradient hydrogel. The Ru diffusion gradient equates to a stiffness gradient and models physiology of the scarred skin. Crosslinking in Ru-dECM hydrogels results in a 23-fold increase in stiffness from a stiffness similar to that of normal skin. Collagen fiber density increases in a stiffness-dependent fashion while stress relaxation also alters, with one additional Maxwell element necessary for characterizing Ru-dECM. Alignment of fibroblasts encapsulated in hydrogels suggests that the stiffness gradient directs fibroblasts to orientate at ∼45 ° in regions below 120 kPa. In areas above 120 kPa, fibroblasts decrease the stiffness prior to adjusting their orientation. Furthermore, fibroblasts remodel their surrounding ECM in a gradient-dependent fashion, with rearrangement of cell-surrounding ECM in high-stiffness areas, and formation of interlaced collagen bundles in low-stiffness areas. Overall, this study shows that fibroblasts remodel their local environment to generate an optimal ECM mechanical and topographical environment. STATEMENT OF SIGNIFICANCE: This study developed a versatile in vitro model with a gradient stiffness using skin-derived ECM hydrogel with unchanged biochemical environment. Using Ruthenium crosslinking, a 20-fold stiffness increase was achieved as observed in fibrotic skin. The interaction between fibroblasts and matrix depends on changes in the matrix stiffness. The stiffness gradient directed the alignment of fibroblasts with ∼45° in regions with≤ 120 kPa. The cells in regions with the higher stiffness decreased stiffness first and then oriented themselves. Furthermore, fibroblasts remodeled surrounding ECM and regulated its mechanics in a gradient-dependent fashion to reach an optimal condition. Our study highlights the dynamic interplay between cells and surrounding matrix, shedding light on potential mechanisms and strategies to target scar formation and remodeling.
Collapse
Affiliation(s)
- Fenghua Zhao
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Meng Zhang
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Hans J Kaper
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Linda A Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Stilgoe A, Favre-Bulle IA, Watson ML, Gomez-Godinez V, Berns MW, Preece D, Rubinsztein-Dunlop H. Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond. ACS PHOTONICS 2024; 11:917-940. [PMID: 38523746 PMCID: PMC10958612 DOI: 10.1021/acsphotonics.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
Collapse
Affiliation(s)
- Alexander
B. Stilgoe
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| | - Itia A. Favre-Bulle
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, 4074, Australia
| | - Mark L. Watson
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
| | - Veronica Gomez-Godinez
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
| | - Michael W. Berns
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Daryl Preece
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Halina Rubinsztein-Dunlop
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| |
Collapse
|
4
|
Mbitta Akoa D, Sicard L, Hélary C, Torrens C, Baroukh B, Poliard A, Coradin T. Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels. Gels 2024; 10:130. [PMID: 38391460 PMCID: PMC10887598 DOI: 10.3390/gels10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.
Collapse
Affiliation(s)
- Daline Mbitta Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Ludovic Sicard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
- AP-HP Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, 75018 Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Coralie Torrens
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| |
Collapse
|
5
|
Shishkina V, Kostin A, Alexeeva N, Klochkova S, Nikityuk D, Volodkin A, Buchwalow I, Tiemann M, Atiakshin D. Histoarchitecture of stromal collagen fibers in gastrointestinal hollow organs of mice after a 30-day space flight. Heliyon 2024; 10:e23287. [PMID: 38163118 PMCID: PMC10757000 DOI: 10.1016/j.heliyon.2023.e23287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The digestive organs are highly sensitive to the influence of orbital flight factors and can limit the professional activities of crew members aboard the International Space Station. Connective tissue, as a system-forming matrix of the integrative-buffer metabolic environment, is of particular relevance in space biomedicine, ensuring the functioning of internal organs under an altered gravitational stimulus. However, the adaptive mechanisms of the fibrous extracellular matrix of the gastric and intestinal connective tissue have not been fully investigated under prolonged microgravity weightlessness. Using histochemical techniques, we experimentally studied the state of collagen fibers in the specific tissue microenvironment of the gastric and intestinal membranes in C57BL/6 N mice after a 30-day space flight, subsequent 7-day ground readaptation, and in animals of the relevant control groups. The 30-day stay of laboratory animals aboard the Bion-M 1 biosatellite resulted in a reduction in the fibrous extracellular matrix of connective tissue in the studied digestive organs, excepting the gastric lamina propria. Increased fibrillogenesis was revealed in the gastrointestinal mucous membranes of animals 7 days after biosatellite landing compared with the parameters of animals in the space flight group. During the experiment with ground simulated orbital flight conditions, changes in collagen fibers were not significant compared to the vivarium control group. Thus, the results obtained evidence gravisensitivity of the fibrous extracellular matrix of the intraorgan connective tissue. This fact also highlights the necessity to further improve gastrointestinal tract-related preventive measures for astronauts during orbital flight.
Collapse
Affiliation(s)
- Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Nataliya Alexeeva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - Dmitry Nikityuk
- Federal State Budgetary Institution "Federal Research Center for Nutrition, Biotechnology and Food Safety", 109240 Moscow, Russia
| | - Artem Volodkin
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Igor Buchwalow
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | | - Dmitrii Atiakshin
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| |
Collapse
|
6
|
Decellularized Matrix Induced Spontaneous Odontogenic and Osteogenic Differentiation in Periodontal Cells. Biomolecules 2023; 13:biom13010122. [PMID: 36671506 PMCID: PMC9855832 DOI: 10.3390/biom13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The regeneration of periodontal tissues is a decisive factor in the treatment of periodontitis. Currently, to achieve complete periodontal regeneration, many studies have evaluated the effectiveness of decellularized tissue-engineered constructs on periodontal regeneration. We studied the possibilities of osteogenic and odontogenic differentiation of periodontal progenitor and stem cells (SCs) of the periosteum and periodontal ligament, in decellularized tooth matrix (dTM) and periodontal ligament (dPDL), in 2D and 3D culture. The cell culture of periodontal cells without decellularized matrices was used as control. On the 14th day of cultivation of PDLSCs, PSCs, and PDLSCs + PSCs on dTM and/or dPDL scaffolds in 2D conditions, in all scaffold variants, a dense monolayer of spindle-shaped cells was intensely stained for markers of osteogenic differentiation, such as osteopontin and osteocalcin. Periodontal cells in the collagen I hydrogel (3D-dimensional culture) were more diverse in shape and, in combination of dTM and dPDL, in addition to osteogenic expression, expressed dentin sialophosphoprotein, an odontogenic differentiation marker. Thus, collagen I hydrogel contributed to the formation of conditions similar to those in vivo, and the combination of dTM with dPDL apparently formed a microenvironment that promoted osteogenic and odontogenic differentiation of periodontal cells.
Collapse
|
7
|
Yang Y, Fu Z, Zhu W, Hu H, Wang J. Application of optical tweezers in cardiovascular research: More than just a measuring tool. Front Bioeng Biotechnol 2022; 10:947918. [PMID: 36147537 PMCID: PMC9486066 DOI: 10.3389/fbioe.2022.947918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in the field of optical tweezer technology have shown intriguing potential for applications in cardiovascular medicine, bringing this laboratory nanomechanical instrument into the spotlight of translational medicine. This article summarizes cardiovascular system findings generated using optical tweezers, including not only rigorous nanomechanical measurements but also multifunctional manipulation of biologically active molecules such as myosin and actin, of cells such as red blood cells and cardiomyocytes, of subcellular organelles, and of microvessels in vivo. The implications of these findings in the diagnosis and treatment of diseases, as well as potential perspectives that could also benefit from this tool, are also discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhenhai Fu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Huizhu Hu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| |
Collapse
|