1
|
Xie L, Zhu XY, Xu L, Xu XX, Ruan ZF, Huang MX, Chen L, Jiang XW. Accurate and affordable detection of rifampicin and isoniazid resistance in Tuberculosis sputum specimens by multiplex PCR-multiple probes melting analysis. Infection 2024; 52:2371-2398. [PMID: 38884858 PMCID: PMC11621165 DOI: 10.1007/s15010-024-02295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Escalating cases of multidrug-resistant tuberculosis (MDR-TB) pose a major challenge to global TB control efforts, necessitating innovative diagnostics to empower decentralized detection of gene mutations associated with resistance to rifampicin (RIF) and isoniazid (INH) in Mycobacterium tuberculosis (M. tuberculosis) in resource-constrained settings. METHODS Combining multiplex fluorescent PCR and Multiple Probes Melting Analysis, we identified mutations in the rpoB, katG, ahpC and inhA genes from sputum specimens. We first constructed a reference plasmid library comprising 40 prevalent mutations in the target genes' resistance determining regions and promoters, serving as positive controls. Our assay utilizes a four-tube asymmetric PCR method with specifically designed molecular beacon probes, enabling simultaneous detection of all 40 mutations. We evaluated the assay's effectiveness using DNA isolated from 50 clinically confirmed M. tuberculosis sputum specimens, comparing our results with those obtained from Sanger sequencing and retrospective validation involving bacteriological culture and phenotypic drug susceptibility testing (pDST). We also included the commercial Xpert MTB/RIF assay for accuracy comparison. RESULTS Our data demonstrated remarkable sensitivity in detecting resistance to RIF and INH, achieving values of 93.33% and 95.24%, respectively, with a specificity of 100%. The concordance between our assay and pDST was 98.00%. Furthermore, the accuracy of our assay was comparable to both Sanger sequencing and the Xpert assay. Importantly, our assay boasts a 4.2-h turnaround time and costs only $10 per test, making it an optimal choice for peripheral healthcare settings. CONCLUSION These findings highlight our assay's potential as a promising tool for rapidly, accurately, and affordably detecting MDR-TB.
Collapse
Affiliation(s)
- Long Xie
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Xiao-Ya Zhu
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Li Xu
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Xiao-Xie Xu
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Ze-Fan Ruan
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Ming-Xiang Huang
- Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, China.
| | - Li Chen
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xi-Wen Jiang
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China.
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China.
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Ismadi YKM, Mohamad S, Harun A. Development of multiplex real-time PCR for simultaneous detection of common fungal pathogens in invasive mycoses. PeerJ 2024; 12:e18238. [PMID: 39430554 PMCID: PMC11491059 DOI: 10.7717/peerj.18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Background Fungi are common opportunistic pathogens that pose a significant threat to immunocompromised patients, particularly when late detection occurs. Methods In this study a multiplex real-time PCR has been developed for simultaneous detection of common fungal pathogens associated with invasive mycoses in a diagnostic setting. Results The specificity of the assay was rigorously tested on 40 types of organisms (n = 65), demonstrating 100% specificity. The limit of detection was determined to be 100 pg/μl (106 copies/μl), achievable within a rapid 3-h timeframe. The PCR assay efficiency exhibited a range between 89.77% and 104.30% for each target organism, with linearity falling between 0.9780 and 0.9983. Conclusion This multiplex real-time PCR assay holds promise for enhancing the timely and accurate diagnosis of invasive mycoses, particularly in immunocompromised patient populations.
Collapse
Affiliation(s)
- Yasmin Khairani Muhammad Ismadi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Tramuto F, Maida CM, Randazzo G, Guzzetta V, Santino A, Li Muli R, Costantino C, Graziano G, Amodio E, Mazzucco W, Vitale F. Whole-Genome Sequencing and Genetic Diversity of Human Respiratory Syncytial Virus in Patients with Influenza-like Illness in Sicily (Italy) from 2017 to 2023. Viruses 2024; 16:851. [PMID: 38932144 PMCID: PMC11209242 DOI: 10.3390/v16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Monitoring the genetic variability of human respiratory syncytial virus (hRSV) is of paramount importance, especially for the potential implication of key antigenic mutations on the emergence of immune escape variants. Thus, to describe the genetic diversity and evolutionary dynamics of hRSV circulating in Sicily (Italy), a total of 153 hRSV whole-genome sequences collected from 770 hRSV-positive subjects between 2017 and 2023, before the introduction of expanded immunization programs into the population, were investigated. The phylogenetic analyses indicated that the genotypes GA.2.3.5 (ON1) for hRSV-A and GB.5.0.5a (BA9) for hRSV-B co-circulated in our region. Amino acid (AA) substitutions in the surface and internal proteins were evaluated, including the F protein antigenic sites, as the major targets of immunoprophylactic monoclonal antibodies and vaccines. Overall, the proportion of AA changes ranged between 1.5% and 22.6% among hRSV-A, whereas hRSV-B varied in the range 0.8-16.9%; the latter was more polymorphic than hRSV-A within the key antigenic sites. No AA substitutions were found at site III of both subgroups. Although several non-synonymous mutations were found, none of the polymorphisms known to potentially affect the efficacy of current preventive measures were documented. These findings provide new insights into the global hRSV molecular epidemiology and highlight the importance of defining a baseline genomic picture to monitor for future changes that might be induced by the selective pressures of immunological preventive measures, which will soon become widely available.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Carmelo Massimo Maida
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giulia Randazzo
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Valeria Guzzetta
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Arianna Santino
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Rita Li Muli
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Claudio Costantino
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giorgio Graziano
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Emanuele Amodio
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
| | - Walter Mazzucco
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Francesco Vitale
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| |
Collapse
|
4
|
Wu F, Cai D, Shi X, Li P, Ma L. Multiplexed detection of eight respiratory viruses based on nanozyme colorimetric microfluidic immunoassay. Front Bioeng Biotechnol 2024; 12:1402831. [PMID: 38817925 PMCID: PMC11137192 DOI: 10.3389/fbioe.2024.1402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024] Open
Abstract
Pandemics caused by respiratory viruses, such as the SARS-CoV-1/2, influenza virus, and respiratory syncytial virus, have resulted in serious consequences to humans and a large number of deaths. The detection of such respiratory viruses in the early stages of infection can help control diseases by preventing the spread of viruses. However, the diversity of respiratory virus species and subtypes, their rapid antigenic mutations, and the limited viral release during the early stages of infection pose challenges to their detection. This work reports a multiplexed microfluidic immunoassay chip for simultaneous detection of eight respiratory viruses with noticeable infection population, namely, influenza A virus, influenza B virus, respiratory syncytial virus, SARS-CoV-2, human bocavirus, human metapneumovirus, adenovirus, and human parainfluenza viruses. The nanomaterial of the nanozyme (Au@Pt nanoparticles) was optimized to improve labeling efficiency and enhance the detection sensitivity significantly. Nanozyme-binding antibodies were used to detect viral proteins with a limit of detection of 0.1 pg/mL with the naked eye and a microplate reader within 40 min. Furthermore, specific antibodies were screened against the conserved proteins of each virus in the immunoassay, and the clinical sample detection showed high specificity without cross reactivity among the eight pathogens. In addition, the microfluidic chip immunoassay showed high accuracy, as compared with the RT-PCR assay for clinical sample detection, with 97.2%/94.3% positive/negative coincidence rates. This proposed approach thus provides a convenient, rapid, and sensitive method for simultaneous detection of eight respiratory viruses, which is meaningful for the early diagnosis of viral infections. Significantly, it can be widely used to detect pathogens and biomarkers by replacing only the antigen-specific antibodies.
Collapse
Affiliation(s)
- Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Defeng Cai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Clinical Laboratory (Pathology) Centre, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xueying Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ping Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
5
|
Hongdan G, Yao D, Qiang C, Meng H, Xiaorong L, Zhihao X, Dongli M. A multiplex recombinase polymerase amplification assay combined with CRISPR/Cas12a for the detection of respiratory syncytial virus and respiratory adenovirus. J Int Med Res 2024; 52:3000605231223083. [PMID: 38230675 PMCID: PMC10798089 DOI: 10.1177/03000605231223083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Respiratory syncytial virus (RSV) and respiratory adenovirus (ADV) are two common pathogens that cause acute respiratory tract infections in children. We aimed to develop a rapid method for detecting both pathogens simultaneously. METHODS The recombinase polymerase isothermal amplification (RPA) method was combined with the CRISPR/Cas detection system. The assay's specificity and sensitivity were explored by designing RPA primers and CRISPR RNAs (crRNAs) through multi-sequence comparisons, optimizing the reaction conditions, and using a fluorescent reading device. The consistency of the test results of 160 clinical pharyngeal swab samples was studied using quantitative polymerase chain reaction (qPCR) results as a comparative control. RESULTS RSV and ADV could be detected at levels as low as 104 copies/mL and 103 copies/mL, respectively, within 50 minutes with no cross-reactivity with other similar pathogens. For the clinical samples, compared with the qPCR method, the sensitivities for RSV and ADV were 98.1% and 91.4%, respectively, and the detection specificities were both 100%. The Kappa values were greater than 0.95, suggesting a high degree of consistency. CONCLUSION This method for detecting RSV and ADV is rapid, sensitive, and specific. It can accurately detect mixed infections in a timely manner, making it suitable for use in areas with scarce healthcare resources.
Collapse
Affiliation(s)
- Gao Hongdan
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Du Yao
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Chai Qiang
- Shenzhen Sea Microbiology Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Huang Meng
- Shenzhen Sea Microbiology Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Liu Xiaorong
- Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xing Zhihao
- Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Ma Dongli
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Wang L, Zhang T, Huo J, Wang Y, Lu Y, Zhu X. Rapid and specific detection of Enterococcus faecium with an isothermal amplification and lateral flow strip combined method. Arch Microbiol 2023; 206:28. [PMID: 38112880 DOI: 10.1007/s00203-023-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Enterococcus faecium is responsible for a highly contagious, drug-resistant nosocomial infection that often causes serious illness. In this study, a rapid and sensitive RPA-LFS (recombinase polymerase amplification-lateral flow strip) method for the detection of E. faecium was established based on specific primers and probes designed using the ddl gene. To verify the specificity and sensitivity of the method, 26 specific strains and 100-106 CFU/μL E. faecium were selected for detection. The results show that the proposed method can specifically detect E. faecium, and the minimum detection limit is 100 CFU/μL. To compare the clinical application of the method with qPCR, 181 clinical samples were collected for testing. RPA-LFS and qPCR had the same practical applicability, and 61 parts of E. faecium were detected in 183 clinical samples. The methods developed in this study not only have the advantages of rapid sensitivity and specificity but also meet the needs of remote areas with scarce medical resources.
Collapse
Affiliation(s)
- Lei Wang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Ting Zhang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Juan Huo
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Yan Wang
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Xinming Zhu
- Department of Laboratory Medicine, Lianyungang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Lianyungang, China.
| |
Collapse
|
7
|
Merida Vieyra J, De Colsa Ranero A, Palacios Reyes D, Murata C, Aquino Andrade A. Chlamydophila pneumoniae-associated community-acquired pneumonia in paediatric patients of a tertiary care hospital in Mexico: molecular diagnostic and clinical insights. Sci Rep 2023; 13:21477. [PMID: 38052876 PMCID: PMC10698025 DOI: 10.1038/s41598-023-48701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Chlamydophila pneumoniae is a cause of community-acquired pneumonia (CAP) and responsible for 1-2% of cases in paediatric patients. In Mexico, information on this microorganism is limited. The aim of this study was to detect C. pneumoniae using two genomic targets in a real-time PCR and IgM/IgG serology assays in paediatric patients with CAP at a tertiary care hospital in Mexico City and to describe their clinical characteristics, radiological features, and outcomes. A total of 154 hospitalized patients with diagnosis of CAP were included. Detection of C. pneumoniae was performed by real-time PCR of the pst and arg genes. Complete blood cell count, C-reactive protein measurement and IgM and IgG detection were performed. Clinical-epidemiological and radiological data from the patients were collected. C. pneumoniae was detected in 25 patients (16%), of whom 88% had underlying disease (P = 0.014). Forty-eight percent of the cases occurred in spring, 36% in girls, and 40% in children older than 6 years. All patients had cough, and 88% had fever. Interstitial pattern on chest-X-ray was the most frequent (68%), consolidation was observed in 32% (P = 0.002). IgM was positive in 7% and IgG in 28.6%. Thirty-six percent presented complications. Four percent died. A high proportion showed co-infection with Mycoplasma pneumoniae (64%). This is the first clinical report of C. pneumoniae as a cause of CAP in Mexican paediatric patients, using two genomic target strategy and serology. We found a frequency of 16.2% with predominance in children under 6 years of age. In addition; cough and fever were the most common symptoms. Early detection of this pathogen allows timely initiation of specific antimicrobial therapy to reduce development of complications. This study is one of the few to describe the presence of C. pneumoniae in patients with underlying diseases.
Collapse
Affiliation(s)
- Jocelin Merida Vieyra
- Laboratory of Molecular Microbiology, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico
| | - Agustín De Colsa Ranero
- Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Deborah Palacios Reyes
- Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Chiharu Murata
- Department of Research Methodology, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Alejandra Aquino Andrade
- Laboratory of Molecular Microbiology, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.
| |
Collapse
|
8
|
Song Z, Jia G, Luo G, Han C, Zhang B, Wang X. Global research trends of Mycoplasma pneumoniae pneumonia in children: a bibliometric analysis. Front Pediatr 2023; 11:1306234. [PMID: 38078315 PMCID: PMC10704248 DOI: 10.3389/fped.2023.1306234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP), attributable to Mycoplasma pneumoniae (MP), represents a predominant form of community-acquired pneumonia in pediatric populations, thereby posing a significant threat to pediatric health. Given the burgeoning volume of research literature associated with pediatric MPP in recent years, it becomes imperative to undertake a bibliometric analysis aimed at delineating the current research landscape and emerging trends, thereby furnishing a framework for subsequent investigations. METHODS A comprehensive literature search targeting pediatric MPP was conducted in the Web of Science Core Collection. After the removal of duplicate entries through Endnote software, the remaining articles were subject to scientometric analysis via Citespace software, VOSviewer software and R language, focusing on variables such as publication volume, contributing nations, institutions and authors, references and keywords. RESULTS A total of 1,729 articles pertinent to pediatric MPP were included in the analysis. China and the United States emerged as the nations with the highest publication output. Italian scholar Susanna Esposito and Japanese scholar Kazunobu Ouchi were the most influential authors in the domain of pediatric MPP. Highly-cited articles primarily focused on the epidemiological investigation of pediatric MPP, the clinical characteristics and treatment of macrolide-resistant MPP, and biomarkers for refractory Mycoplasma pneumoniae pneumonia (RMPP). From the corpus of 1,729 articles, 636 keywords were extracted and categorized into ten clusters: Cluster #0 centered on molecular-level typing of macrolide-resistant strains; Cluster #1 focused on lower respiratory tract co-infections; Clusters #2 and #6 emphasized other respiratory ailments caused by MP; Cluster #3 involved biomarkers and treatment of RMPP; Clusters #4 and #9 pertained to extrapulmonary complications of MPP, Clusters #5 and #7 addressed etiological diagnosis of MPP, and Cluster #8 explored pathogenic mechanisms. CONCLUSIONS The past few years have witnessed extensive attention directed towards pediatric MPP. Research in pediatric MPP principally revolves around diagnostic techniques for MP, macrolide resistance, complications of MPP, treatment and diagnosis of RMPP, and elucidation of pathogenic mechanisms. The present study provides pediatric clinicians and researchers with the research status and focal points in this field, thereby guiding the orientation of future research endeavors.
Collapse
Affiliation(s)
- Zhe Song
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangyuan Jia
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangzhi Luo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengen Han
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoqing Zhang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
CRISPR/Cas12a-powered evanescent wave fluorescence nanobiosensing platform for nucleic acid amplification-free detection of Staphylococcus aureus with multiple signal enhancements. Biosens Bioelectron 2023; 225:115109. [PMID: 36731397 DOI: 10.1016/j.bios.2023.115109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Although CRISPR-based biosensors for pathogenic detection are highly specific, they not sensitive enough and nucleic acid amplification is generally required to improve their sensitivity. However, this allows only binary operations and significantly limits practical applications. Here, a CRISPR/Cas12a-powered Evanescent wAve fluorescence nanobiosensing plaTform (CREAT) was developed for ultrasensitive nucleic acid amplification-free quantitative detection of pathogens with multiple signal enhancements. In addition to collateral cleavage amplification of the CRISPR/Cas12a system, we constructed nanophotonic structure-based evanescent wave fluorescence enhancement, Mg2+ or DNA-mediated fluorescence enhancement, and air-displacement fluorescence enhancement strategies for ultrasensitive detection of Staphylococcus aureus (S. aureus). Especially, the fluorescence signal detected by CREAT can be significantly enhanced by adding a simple air displacement step, thus improving detection sensitivity. This nanobiosensor detected real samples containing S. aureus, with a detection limit of 592 CFU/mL and 13.2 CFU/mL in 45 min and 90 min, respectively, which are comparable to those of RT-qPCR. This paves a new way for simple, rapid, sensitive, robust, and flexible on-site detection of S. aureus as well as other pathogens.
Collapse
|
10
|
Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics (Basel) 2023; 13:diagnostics13020277. [PMID: 36673087 PMCID: PMC9857847 DOI: 10.3390/diagnostics13020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.
Collapse
|
11
|
Are ELISA and PCR Discrepancies in the Identification of Chlamydia pneumoniae Caused by the Presence of " Chlamydia-Related Bacteria"? Microorganisms 2023; 11:microorganisms11010187. [PMID: 36677479 PMCID: PMC9865915 DOI: 10.3390/microorganisms11010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Chlamydia are Gram-negative, intracellular pathogens colonizing the epithelial mucosa. They cause primarily atypical pneumonia and have recently been associated with chronic diseases. Diagnostics rely almost exclusively on serological methods; PCR tests are used rarely because in patients with positive ELISA, it is nearly impossible to identify chlamydial DNA. To understand this issue, we elaborated a reliable and sensitive nested PCR method (panNPCR) for identifying all Chlamydiales species, not only in sputa, but also in clotted blood. Sequencing of the PCR product revealed that 41% of positive sputa samples and 66% of positive blood samples were not infected by Chlamydia but with "Chlamydia-related bacteria" such as Rhabdochlamydia sp., Parachlamydia sp., Protochlamydia sp., Neochlamydia sp., Mesochlamydia elodeae and lacustris, Piscichlamydia salmonis, and Estrella lausannensis. Consequently, we propose that there might be more than four human pathogenic Chlamydia species. We did not find any clear correlation between increased levels of antibodies and the presence of their DNA. Chlamydialles DNA was found in sputa samples from individuals positive for IgG or IgA but not in blood samples. Thus, elevated IgG and IgA levels are not reliable markers of chronic infection, and the presence of persistent forms should be proved by panNPCR. Apparently, the differences between ELISA and DNA amplification results have three main methodological reasons. The first one is the threshold occurrence of chlamydial genetic material in sputum and blood. The second one is the fact that a significant part of the samples can have DNA with sequences different from those of other species of the order Chlamydiales. The third one is the high background characteristic for ELISA, the absence of paired sera, and the vague interpretation of the gray zone.
Collapse
|