1
|
Bai J, Wang Y, Li Y, Liu Y, Wang S. Protective effect of ghrelin in oxidative stress-induced age-related macular degeneration in vitro and in vivo. Mol Med 2024; 30:142. [PMID: 39251914 PMCID: PMC11384690 DOI: 10.1186/s10020-024-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Oxidative damage to human retinal pigment epithelial (RPE) cells is the main cause of age-related macular degeneration (AMD), in our previous work, we showed that ghrelin has an antioxidative effect on human lens epithelium (HLE) cells, however, the studies of using ghrelin in treating the degenerative diseases of the retina have rarely been reported. In this article, we assessed the effect of ghrelin on preventing oxidative stress induced by hydrogen peroxide (H2O2) in ARPE-19 cells and its mechanism. We observed that pretreatment with ghrelin protected ARPE-19 cells from H2O2-induced cell oxidative injuries and apoptosis responses. Furthermore, an oxidative stress-induced mouse model of AMD was established via injection of sodium iodate (NaIO3) to tail veins, and treatment with ghrelin preserved retinal function, and protected photoreceptors.
Collapse
Affiliation(s)
- Jie Bai
- Department of Ophthalmology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, P. R. China.
| | - Yanqing Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, P. R. China
| | - Yanze Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, P. R. China
| | - Yan Liu
- Department of Ophthalmology and Otorhinolaryngology, Yiwu Second People's Hospital, Yiwu, 322000, Zhejiang, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199, P. R. China.
| |
Collapse
|
2
|
Nguyen VP, Karoukis AJ, Hu J, Wei Z, Yang D, Fahim AT, Wang X, Paulus YM. Selective nanosecond laser removal of retinal pigment epithelium for cell therapy. Sci Rep 2024; 14:19457. [PMID: 39169055 PMCID: PMC11339075 DOI: 10.1038/s41598-024-69917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Retinal pigment epithelial (RPE) cells play a crucial role in the health of the retina, and their dysfunction is associated with various ocular diseases. The transplantation of RPE cells has been proposed as a potential treatment for numerous degenerative diseases, including geographic atrophy from macular degeneration. However, current models to induce RPE damage in animal models prior to transplantation involve mechanical scraping, chemical administration, or laser photocoagulation techniques, which can damage the overlying neurosensory retina. This study aims to investigate the feasibility and efficacy of nanosecond duration laser treatment to safely remove large areas of RPE cells without causing damage to the adjacent tissue or affecting the retinal architecture. Twelve pigmented rabbits were treated with a nanosecond laser on each eye at a laser energy ranging from 200 to 800 nJ with a treated area of 5 × 5 mm2. Human induced pluripotent stem cells-differentiated to RPE (hiPSC-RPE) cells labeled with indocyanine green (ICG), an FDA approved dye, were transplanted subretinally into the damaged RPE areas at day 14 post-laser treatment. The RPE atrophy and hiPSC-RPE cell survival was evaluated and monitored over a period of 14 days using color photography, fluorescein angiography (FA), photoacoustic microscopy (PAM), and optical coherence tomography (OCT) imaging. All treated eyes demonstrated focal RPE loss with a success rate of 100%. The injured RPE layers and the transplanted hiPSC-RPE cells were visualized in three dimensions using PAM and OCT. By performing PAM at an optical wavelength of 700 nm, the location of hiPSC-RPE cells were identified and distinguished from the surrounding RPE cells, and the induced PA signal increased up to 18 times. Immunohistochemistry results confirmed the grafted hiPSC-RPE replaced regions of RPE damage. This novel technique has the potential to serve as an animal model of RPE degeneration, to improve models of RPE transplantation, and may help accelerate translation of this therapeutic strategy for clinical use.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Athanasios J Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Zhuying Wei
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yannis M Paulus
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Raeker MÖ, Perera ND, Karoukis AJ, Chen L, Feathers KL, Ali RR, Thompson DA, Fahim AT. Reduced Retinal Pigment Epithelial Autophagy Due to Loss of Rab12 Prenylation in a Human iPSC-RPE Model of Choroideremia. Cells 2024; 13:1068. [PMID: 38920696 PMCID: PMC11201631 DOI: 10.3390/cells13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.
Collapse
Affiliation(s)
- Maide Ö. Raeker
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Nirosha D. Perera
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Athanasios J. Karoukis
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Lisheng Chen
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kecia L. Feathers
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Robin R. Ali
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- KCL Center for Cell and Gene Therapy, London WC2R 2LS, UK
| | - Debra A. Thompson
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abigail T. Fahim
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| |
Collapse
|
4
|
Nicholson JG, Cirigliano S, Singhania R, Haywood C, Shahidi Dadras M, Yoshimura M, Vanderbilt D, Liechty B, Fine HA. Chronic hypoxia remodels the tumor microenvironment to support glioma stem cell growth. Acta Neuropathol Commun 2024; 12:46. [PMID: 38528608 DOI: 10.1186/s40478-024-01755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Cerebral organoids co-cultured with patient derived glioma stem cells (GLICOs) are an experimentally tractable research tool useful for investigating the role of the human brain tumor microenvironment in glioblastoma. Here we describe long-term GLICOs, a novel model in which COs are grown from embryonic stem cell cultures containing low levels of GSCs and tumor development is monitored over extended durations (ltGLICOs). Single-cell profiling of ltGLICOs revealed an unexpectedly long latency period prior to GSC expansion, and that normal organoid development was unimpaired by the presence of low numbers of GSCs. However, as organoids age they experience chronic hypoxia and oxidative stress which remodels the tumor microenvironment to promote GSC expansion. Receptor-ligand modelling identified astrocytes, which secreted various pro-tumorigenic ligands including FGF1, as the primary cell type for GSC crosstalk and single-cell multi-omic analysis revealed these astrocytes were under the control of ischemic regulatory networks. Functional validation confirmed hypoxia as a driver of pro-tumorigenic astrocytic ligand secretion and that GSC expansion was accelerated by pharmacological induction of oxidative stress. When controlled for genotype, the close association between glioma aggressiveness and patient age has very few proposed biological explanations. Our findings indicate that age-associated increases in cerebral vascular insufficiency and associated regional chronic cerebral hypoxia may contribute to this phenomenon.
Collapse
Affiliation(s)
- J G Nicholson
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - S Cirigliano
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - R Singhania
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - C Haywood
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Shahidi Dadras
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Yoshimura
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - D Vanderbilt
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - B Liechty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - H A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Hass DT, Zhang Q, Autterson GA, Bryan RA, Hurley JB, Miller JML. Medium Depth Influences O2 Availability and Metabolism in Human RPE Cultures. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 37922158 PMCID: PMC10629522 DOI: 10.1167/iovs.64.14.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2023] Open
Abstract
Purpose Retinal pigment epithelium (RPE) oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. Methods We altered the availability of O2 to human primary and induced pluripotent stem cell-derived RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCRs), glucose consumption, lactate production, 13C6-glucose and 13C5-glutamine flux, hypoxia inducible factor 1α (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, transepithelial electrical resistance, cell morphology, and pigmentation. Results Medium volumes commonly employed during RPE culture limit diffusion of O2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O2 availability decrease acetyl-CoA utilization, increase glycolysis and reductive carboxylation, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. Conclusions Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology "under the hood." As RPE-centric diseases like age-related macular degeneration involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O2 availability seen with smaller media volumes.
Collapse
Affiliation(s)
- Daniel T. Hass
- Department of Biochemistry, The University of Washington, Seattle, Washington, United States
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | | | | | - James B. Hurley
- Department of Biochemistry, The University of Washington, Seattle, Washington, United States
| | - Jason M. L. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Hernandez BJ, Skiba NP, Plössl K, Strain M, Liu Y, Grigsby D, Kelly U, Cady MA, Manocha V, Maminishkis A, Watkins T, Miller SS, Ashley‐Koch A, Stamer WD, Weber BHF, Bowes Rickman C, Klingeborn M. Polarized Desmosome and Hemidesmosome Shedding via Small Extracellular Vesicles is an Early Indicator of Outer Blood-Retina Barrier Dysfunction. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e116. [PMID: 38108061 PMCID: PMC10720597 DOI: 10.1002/jex2.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).
Collapse
Affiliation(s)
- Belinda J. Hernandez
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Karolina Plössl
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
| | - Madison Strain
- Duke Molecular Physiology Institute, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Daniel Grigsby
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Una Kelly
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Martha A. Cady
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Vikram Manocha
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and DiseaseNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - TeddiJo Watkins
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Office of Animal Welfare Assurance, Duke Animal Care and Use ProgramDuke UniversityDurhamNorth CarolinaUSA
| | - Sheldon S. Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and DiseaseNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Allison Ashley‐Koch
- Duke Molecular Physiology Institute, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Bernhard H. F. Weber
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
- Institute of Clinical Human GeneticsUniversity Hospital RegensburgRegensburgGermany
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- McLaughlin Research InstituteGreat FallsMontanaUSA
| |
Collapse
|
7
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Mordà D, Rinaldi C, D'Angelo R, Sidoti A. Human retinal secretome: A cross-link between mesenchymal and retinal cells. World J Stem Cells 2023; 15:665-686. [PMID: 37545752 PMCID: PMC10401416 DOI: 10.4252/wjsc.v15.i7.665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98125, Italy
| | | | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| |
Collapse
|
8
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Hernandez BJ, Skiba NP, Plößl K, Strain M, Grigsby D, Kelly U, Cady MA, Manocha V, Maminishkis A, Watkins T, Miller SS, Ashley-Koch A, Stamer WD, Weber BHF, Rickman CB, Klingeborn M. Polarized Desmosome and Hemidesmosome Shedding via Exosomes is an Early Indicator of Outer Blood-Retina Barrier Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544677. [PMID: 37398366 PMCID: PMC10312606 DOI: 10.1101/2023.06.12.544677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of exosomes that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral exosomes from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of exosome release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in exosome content, including basal-side specific desmosome and hemidesmosome shedding via exosomes. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases, (e.g., AMD) and broadly from blood-CNS barriers in other neurodegenerative diseases.
Collapse
|
10
|
Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:227-269. [PMID: 37678973 DOI: 10.1016/bs.pmbts.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macular degeneration (MD) is a group of diseases characterized by irreversible and progressive vision loss. Patients with MD suffer from severely impaired central vision, especially elderly people. Currently, only one type of MD, wet age-related macular degeneration (AMD), can be treated with anti-vascular endothelium growth factor (VEGF) drugs. Other types of MD remain difficult to treat. With the advent of human pluripotent stem cells (hPSCs) and their differentiation into retinal pigmented epithelium (RPE), it is promising to treat patients with MD by transplantation of hPSC-derived RPE into the subretinal space. In this review, the current progress in hPSC-derived RPE transplantation for the treatment of patients with MD is described from bench to bedside, including hPSC differentiation into RPE and the characterization and usage of hPSC-derived RPE for transplantation into patients with MD.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|