1
|
Galor N, Zeilig G, Plotnik M. A New Measure for Quantifying Four-Limb Coordination of Human Gait Based on Mobility Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:6105. [PMID: 39338850 PMCID: PMC11435969 DOI: 10.3390/s24186105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024]
Abstract
Coordinated movement of four limbs is a hallmark of healthy locomotion. No measures exist to quantify four-limb coordination. This study aimed to investigate temporal four-limb coordination and proposed a new metric for quantifying the inter-limb phase of rhythmic locomotion-related movements. Kinetic data of arm and leg movements generated during walking (self-selected speed) from healthy adults were used to extract the phases (φ) between all possible limb pairings. The φ series were used to calculate each pair's Phase Coordination Index (PCI). The PCI quantifies the accuracy and consistency of generating anti-phased rhythmic movements (lower PCI values mean better coordination). We also calculated the Quadruple-PCI (Q-PCI) by combining all φ values of all limb pairs. We found a significant correlation between the PCI values of all limb pairings and the Q-PCI (pairs involving arms: Pearson's R > 0.79, p < 0.001; leg-leg: Pearson's R = 0.3, p < 0.01). The PCI values that involve arms (median values between 6.5% and 8.3%) were significantly higher than the leg-leg PCI (median values between 3.8% and 4.1%), and the Q-PCI (median values between 8.3% and 9.7%) was significantly higher than all other PCI values. We also found a negative correlation between the arm swing amplitude and the PCI values (Spearman's Rho of different limb pairings ranging from -0.25 to -0.5, p < 0.05), suggesting that higher arm swing amplitude leads to better coordination. Four-limb coordination analysis is a novel method for comprehensive assessment of gait coordination, which is often compromised among persons with disabilities.
Collapse
Affiliation(s)
- Noam Galor
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan 5266202, Israel;
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan 5266202, Israel;
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Health Professions, Ono Academic College, Kiryat Ono 5545001, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan 5266202, Israel;
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Goetschalckx M, Moumdjian L, Feys P, Rameckers E. Interlimb coordination and spatiotemporal variability during walking and running in children with developmental coordination disorder and typically developing children. Hum Mov Sci 2024; 96:103252. [PMID: 39018699 DOI: 10.1016/j.humov.2024.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND A different interlimb coordination and higher variability in movement patterns is evident in children with Developmental Coordination Disorder (DCD). The impact of DCD on interlimb coordination during walking and running is unknown. AIM To assess interlimb coordination and spatiotemporal variability during overground walking and running in children with and without DCD. METHODS Children with DCD and typically developing children (TDC), from 8 to 12 years participated. Children were equipped with portable sensors. Participants walked and ran for 3 min in an oval-path at their comfortable pace. Interlimb coordination, expressed by the phase coordination index (PCI), and spatiotemporal variability (coefficient of variance (CoV)) were collected. RESULTS Twenty-one children with DCD and 23 TDC participated. During walking, PCI showed similar values in both groups, but a higher spatiotemporal variability was observed in children with DCD. During running, PCI was higher (reduced coordination) in children with DCD than TDC and a higher spatiotemporal variability was shown. CONCLUSIONS AND IMPLICATIONS Only during running, interlimb coordination of children with DCD was lower than TDC. During both walking and running tasks, spatiotemporal variability was higher in DCD. Current results implicate that difficulties in children with DCD is more prominent when motor coordination is more challenged. WHAT THIS PAPER ADDS This paper adds to the literature on coordination and gait pattern in children with Developmental Coordination Disorder (DCD) through a cross-sectional analysis of interlimb coordination and variability of spatiotemporal measures of overground walking and running. Overground walking and running were performed in a large oval-path allowing the assessment of coordination and gait patterns in an ecological valid set-up. Our results indicate that during a more demanding task, namely running, children with DCD display a less coordinated running pattern, expressed by a significantly higher phase coordination index, than typically developing peers. During walking, the interlimb coordination was similar between both groups. The current result is in accordance with the hybrid model of DCD that states that motor coordination difficulties in DCD are dpendent on the interaction of the task, individual and environment. This highlights the importance of implementing running assessments in children with DCD and the need for task-oriented running training in clinical practice The study also supports previous findings that children with DCD show a higher variability in their gait pattern of both walking and running, expressed by higher coefficient of variance of spatiotemporal measures, than typically developing peers. Further understanding in the normal development of interlimb coordination during walking and running from childhood into adulthood will enhance interpretations of the phase coordination index in children with and without DCD.
Collapse
Affiliation(s)
- Mieke Goetschalckx
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.
| | - Lousin Moumdjian
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; IPEM, Institute of Psychoacoustic and Electronic music, Faculty of Art and Philosophy, Gent University, Gent, Belgium
| | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Eugene Rameckers
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; CAPHRI, Maastricht University, Maastricht, the Netherlands; Centre of Expertise, Adelante Rehabilitation centre, Valkenburg, the Netherlands
| |
Collapse
|
3
|
Shinya M, Takiyama K. Guidelines for balancing the number of trials and the number of subjects to ensure the statistical power to detect variability - Implication for gait studies. J Biomech 2024; 165:111995. [PMID: 38377741 DOI: 10.1016/j.jbiomech.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Variability is one of the most crucial outcomes in human movement studies: variance and standard deviation of various parameters have been reported in numerous studies. However, in many of these studies, the numbers of trials and subjects have been intuitively determined and not justified with statistical considerations. Here, we investigated the impact of the numbers of trials and subjects on statistical power, based on the assumption that results per trial follow a normal distribution, using mathematical analysis and numerical simulation. An inverse-like relationship was observed between the number of trials and subjects required to ensure the statistical power for detecting differences in variance between subject groups or conditions. For instance, assuming a 1.2-times difference in population variance between pre-and post-training sessions as an alternative hypothesis, our simulation demonstrated that combinations of the number of subjects and trials, such as measuring 100 trials from each of 12 subjects under each condition, or measuring 20 trials from each of 60 subjects, can guarantee an 80 % of statistical power. Planning research based on such mathematical considerations will enable meaningful statistical interpretations in studies focusing on movement variability, such as gait studies.
Collapse
Affiliation(s)
- Masahiro Shinya
- Dept. Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Ken Takiyama
- Dept. Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
4
|
Cutisque LP, Moreira NB, Silveira CC, Morozowski FW, Rodacki ALF. The role of ankle and knee muscle characteristics in spatiotemporal gait parameters at different walking speeds: A cross-sectional study. Gait Posture 2024; 108:77-83. [PMID: 38008035 DOI: 10.1016/j.gaitpost.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Understanding the intricate interplay between ankle and knee muscle characteristics and their impact on gait parameters is crucial for enhancing our comprehension of human locomotion, particularly in the context of varying walking speeds among healthy young adults. RESEARCH QUESTION The study aimed to identify the relative importance of ankle and knee flexor and extensor muscle characteristics (e.g., strength estimated by peak torque [PT] and rate of torque development [RTD]) in the spatiotemporal gait parameters and variability in self-selected (SSWS) and fast walking speeds (FWS) in healthy young adults. METHODS One hundred and thirty-nine adults (75 men - 54% and 64 women - 46%; 29.04 ± 9.55 years) were assessed about their muscle characteristics (PT and RTD by an isokinetic dynamometer) and spatiotemporal gait parameters at different walking speeds (SSWS and FWS by an instrumented walkway). RESULTS Data analysis indicated a weak relationship between the PT and RTD of the ankle and knee and spatiotemporal gait parameters and variability in both walking conditions (SSWS: R2 0.14-0.05; FWS: R2 0.40-0.05). The strength of the knee muscles was more relevant when walking at a self-selected speed, while the strength of the ankle muscles played a more prominent role when walking at a fast pace. SIGNIFICANCE The findings underscore the critical role of ankle muscles (plantar and dorsiflexors) at fast walking speeds. Therefore, targeted interventions for strength and optimization of these muscles are paramount.
Collapse
Affiliation(s)
| | - Natália Boneti Moreira
- Department of Prevention and Rehabilitation in Physical Therapy, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Caio Corso Silveira
- Department of Physical Education, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
5
|
Vanmechelen I, Desloovere K, Haberfehlner H, Martens B, Vermeulen JR, Buizer AI, Aerts JM, Feys H, Monbaliu E. Altered upper limb kinematics in individuals with dyskinetic cerebral palsy in comparison with typically developing peers - A statistical parametric mapping study. Gait Posture 2024; 107:141-151. [PMID: 37344269 DOI: 10.1016/j.gaitpost.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Dyskinetic cerebral palsy (DCP) is clinically characterized by involuntary movements and abnormal postures, which can aggravate with activity. While upper limb movement variability is often detected in the clinical picture, it remains unknown how movement patterns of individuals with DCP differ from typically developing (TD) peers. RESEARCH QUESTION Do individuals with DCP show i) higher time-dependent standard deviations of upper limb joint angles and ii) altered upper limb kinematics in time and/or amplitude during functional upper limb tasks in comparison with TD individuals? METHODS Three-dimensional upper limb movement patterns were cross-sectionally compared in 50 individuals with and without DCP during three functional tasks: reach forward (RF), reach and grasp vertical (RGV) and reach sideways (RS). Mean and point-wise standard deviations of angular waveform of the upper limb joint angles were compared between groups to evaluate differences in time and/or amplitude using traditional and non-linear registration statistical parametric mapping. RESULTS Thirty-five extremities from 30 individuals (mean age 17y4m, range 5-25 y; MACS level I(n = 2); II(n = 15); III(n = 16); IV(n = 2)) with DCP and twenty TD individuals (mean age 16y8m, range 8-25 y) were evaluated. The DCP compared to TD group showed higher point-wise standard deviations at the level of all joints, which was time-dependent and varied between tasks. Mean wrist and elbow flexion was higher for the DCP group during RF (0-83 % wrist; 57-100 % elbow), RGV (0-82 % wrist; 12-100 % elbow) and RS (0-43 % wrist; 70-100 % elbow). SIGNIFICANCE This is the first study exploring the movement patterns of individuals with DCP during reaching using quantitative measures. Analyzing these individual movement patterns by statistical parametric mapping (SPM) allows us to focus on both specific joint or on specific timing during the movement cycle. The individual information that this method yields can guide individual therapy aiming to improve reaching function in different parts of the movement cycle or evaluate intervention effects on upper extremity treatment.
Collapse
Affiliation(s)
- Inti Vanmechelen
- KU Leuven campus Bruges, Department of Rehabilitation Sciences, Spoorwegstraat 12, Bruges, Belgium.
| | - Kaat Desloovere
- KU Leuven, Department of Rehabilitation Sciences, Weligerveld 12, Pellenberg, Belgium
| | - Helga Haberfehlner
- KU Leuven campus Bruges, Department of Rehabilitation Sciences, Spoorwegstraat 12, Bruges, Belgium; Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Brian Martens
- Maastricht UMC, Department of Neurology, School of Mental Health and Neurosciences, P. Debyelaan 25, Maastricht, the Netherlands
| | - Jeroen R Vermeulen
- Maastricht UMC, Department of Neurology, School of Mental Health and Neurosciences, P. Debyelaan 25, Maastricht, the Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, 1081 BT Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jean-Marie Aerts
- KU Leuven, Department of Biosystems, Division of Animal and Human Health Engineering, Measure, Model and Manage Bioresponse (M3-BIORES), Leuven, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, 0&N4, Herestraat 49, Leuven, Belgium
| | - Elegast Monbaliu
- KU Leuven campus Bruges, Department of Rehabilitation Sciences, Spoorwegstraat 12, Bruges, Belgium
| |
Collapse
|
6
|
Couto AGB, Vaz MAP, Pinho L, Félix J, Moreira J, Pinho F, Mesquita IA, Mesquita Montes A, Crasto C, Sousa ASP. Interlimb Coordination during Double Support Phase of Gait in People with and without Stroke. J Mot Behav 2023; 56:195-210. [PMID: 37990958 DOI: 10.1080/00222895.2023.2282088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
This study aims to identify differences between participants with and without stroke regarding the ipsilesional and contralesional lower limbs kinematics, kinetics, muscle activity and their variability during double support phase of gait. Eleven post-stroke and thirteen healthy participants performed 10 gait trials at a self-selected speed while being monitored by an optoelectronic motion capture system, two force plates and an electromyographic system. The following outcomes were evaluated during the double support: the time and the joint position; the external mechanical work on the centre of mass; and the relative electromyographic activity. Both, contralesional/ipsilesional and dominant/non-dominant of participants with and without stroke, respectively, were evaluated during double support phase of gait in trailing or leading positions. The average value of each parameter and the coefficient of variation of the 10 trials were analysed. Post-stroke participants present bilateral decreased mechanical work on the centre of mass and increased variability, decreased contralesional knee and ankle flexion in trailing position, increased ipsilesional knee flexion in leading position and increased variability. Increased relative muscle activity was observed in post-stroke participants with decreased variability. Mechanical work on the centre of mass seems to be the most relevant parameter to identify interlimb coordination impairments in post-stroke subjects.
Collapse
Affiliation(s)
- Ana G B Couto
- Department of Physiotherapy and Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mário A P Vaz
- Institute of Mechanical Engineering and Industrial Management, Faculty of Engineering, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Liliana Pinho
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave, Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
- Faculty of Sport, University of Porto, Porto, Portugal
| | - José Félix
- Department of Physics and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Juliana Moreira
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisco Pinho
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave and Health and Human Movement Unit (H2M), Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
| | - Inês Albuquerque Mesquita
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Department of Functional Sciences and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - António Mesquita Montes
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Carlos Crasto
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Andreia S P Sousa
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
7
|
Bonanno M, De Nunzio AM, Quartarone A, Militi A, Petralito F, Calabrò RS. Gait Analysis in Neurorehabilitation: From Research to Clinical Practice. Bioengineering (Basel) 2023; 10:785. [PMID: 37508812 PMCID: PMC10376523 DOI: 10.3390/bioengineering10070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
When brain damage occurs, gait and balance are often impaired. Evaluation of the gait cycle, therefore, has a pivotal role during the rehabilitation path of subjects who suffer from neurological disorders. Gait analysis can be performed through laboratory systems, non-wearable sensors (NWS), and/or wearable sensors (WS). Using these tools, physiotherapists and neurologists have more objective measures of motion function and can plan tailored and specific gait and balance training early to achieve better outcomes and improve patients' quality of life. However, most of these innovative tools are used for research purposes (especially the laboratory systems and NWS), although they deserve more attention in the rehabilitation field, considering their potential in improving clinical practice. In this narrative review, we aimed to summarize the most used gait analysis systems in neurological patients, shedding some light on their clinical value and implications for neurorehabilitation practice.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Alessandro Marco De Nunzio
- Department of Research and Development, LUNEX International University of Health, Exercise and Sports, Avenue du Parc des Sports, 50, 4671 Differdange, Luxembourg
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Annalisa Militi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Francesco Petralito
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| |
Collapse
|
8
|
Kamijo A, Furihata C, Kimura Y, Furuhata I, Ohtani T, Miyajima T. Postural control exercise without using the upper limbs improves activities of daily living in patients with stroke. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1124515. [PMID: 37113747 PMCID: PMC10126374 DOI: 10.3389/fresc.2023.1124515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Introduction Stroke is one of the most common neurological disorders worldwide. Stroke survivors have restricted activities of daily living (ADL) and lower functional independence measures (FIM) after disease onset. Recovery of postural control abilities in patients with stroke is one of the most important therapeutic goals. In this study, we examined the differences in the FIM motor items between groups that performed postural control exercises with the upper limb and those that performed postural control exercises without the upper limb. Methods The medical records of patients with stroke admitted and discharged from the Recovery Rehabilitation Unit at Azumino Red Cross Hospital between 2016 and 2018 were reviewed. We retrospectively investigated the relationships between postural control exercises with or without upper limbs, FIM motor items at admission and discharge, and percentage of gait acquisition at discharge. Results and Discussion Among the thirteen FIM motor items, nine (bathing, dressing the upper body, dressing the lower body, toileting, transfers [bed, chair, and wheelchair], transfers [toilet], transfers [tub or shower], locomotion, and climbing of stairs) were significantly different between the two groups (those who performed postural control exercises with the upper limb and those who performed postural control exercises without the upper limb). Patients with stroke who performed postural control exercises without the upper limbs showed a higher percentage of gait acquisition. Touch contact during quiet standing reduces body sway and the associated fluctuations. However, continual practice of postural control with a small degree of body sway for a long period after a stroke would result in decreased pressure on the sole. This may hinder postural control relearning. Touch contact also reduces anticipatory postural adjustment, which may limit the improvement in balance ability during physical exercise. Postural control exercises without the upper limbs improve postural control ability and may be beneficial from a long-term perspective.
Collapse
Affiliation(s)
- Akio Kamijo
- Nagano College of Nursing, Division of Basic & Clinical Medicine, Komagane, Japan
- Correspondence: Akio Kamijo
| | - Chisato Furihata
- Azumino Red Closs Hospital, Division of Rehabilitation, Azumino, Japan
| | - Yuki Kimura
- Azumino Red Closs Hospital, Division of Rehabilitation, Azumino, Japan
| | - Isamu Furuhata
- Azumino Red Closs Hospital, Division of Rehabilitation, Azumino, Japan
| | - Takeshi Ohtani
- Azumino Red Closs Hospital, Division of Rehabilitation, Azumino, Japan
| | - Takeshi Miyajima
- Matsumoto Nakagawa Hospital, Division of Rehabilitation, Matsumoto, Japan
| |
Collapse
|