1
|
Woo J, Loycano M, Amanullah M, Qian J, Amend SR, Pienta KJ, Zhang H. Single-Cell Proteomic Characterization of Drug-Resistant Prostate Cancer Cells Reveals Molecular Signatures Associated with Morphological Changes. Mol Cell Proteomics 2025; 24:100949. [PMID: 40090465 DOI: 10.1016/j.mcpro.2025.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025] Open
Abstract
This study delves into the proteomic intricacies of drug-resistant cells (DRCs) within prostate cancer, which are known for their pivotal roles in therapeutic resistance, relapse, and metastasis. Utilizing single-cell proteomics (SCP) with an optimized high-throughput data-independent acquisition (DIA) approach with the throughput of 60 sample per day, we characterized the proteomic landscape of DRCs in comparison to parental PC3 cells. This DIA method allowed for robust and reproducible protein quantification at the single-cell level, enabling the identification and quantification of over 1300 proteins per cell on average. Distinct proteomic sub-clusters within the DRC population were identified, closely linked to variations in cell size. The study uncovered novel protein signatures, including the regulation of proteins critical for cell adhesion and metabolic processes, as well as the upregulation of surface proteins and transcription factors pivotal for cancer progression. Furthermore, by conducting single-cell RNA-seq (scRNA-seq) analysis, we identified six upregulated and 10 downregulated genes consistently altered in drug-treated cells across both SCP and scRNA-seq platforms. These findings underscore the heterogeneity of DRCs and their unique molecular signatures, providing valuable insights into their biological behavior and potential therapeutic targets.
Collapse
Affiliation(s)
- Jongmin Woo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Loycano
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Md Amanullah
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah R Amend
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Woo J, Loycano M, Amanullah M, Qian J, Amend S, Pienta K, Zhang H. Single-Cell Proteomic and Transcriptomic Characterization of Drug-Resistant Prostate Cancer Cells Reveals Molecular Signatures Associated with Morphological Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619905. [PMID: 39553982 PMCID: PMC11565813 DOI: 10.1101/2024.10.23.619905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study delves into the proteomic intricacies of drug-resistant cells (DRCs) within prostate cancer, which are known for their pivotal roles in therapeutic resistance, relapse, and metastasis. Utilizing single-cell proteomics (SCP) with an optimized high-throughput Data Independent Acquisition (DIA) approach with the throughput of 60 sample per day, we characterized the proteomic landscape of DRCs in comparison to parental PC3 cells. This optimized DIA method allowed for robust and reproducible protein quantification at the single-cell level, enabling the identification and quantification of over 1,300 proteins per cell on average. Distinct proteomic sub-clusters within the DRC population were identified, closely linked to variations in cell size. The study uncovered novel protein signatures, including the regulation of proteins critical for cell adhesion and metabolic processes, as well as the upregulation of surface proteins and transcription factors pivotal for cancer progression. Furthermore, by integrating SCP and single-cell RNA-seq (scRNA-seq) data, we identified six upregulated and ten downregulated genes consistently altered in drug-treated cells across both SCP and scRNA-seq platforms. These findings underscore the heterogeneity of DRCs and their unique molecular signatures, providing valuable insights into their biological behavior and potential therapeutic targets.
Collapse
|
3
|
Bukkuri A. Modeling stress-induced responses: plasticity in continuous state space and gradual clonal evolution. Theory Biosci 2024; 143:63-77. [PMID: 38289469 DOI: 10.1007/s12064-023-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/13/2023] [Indexed: 03/01/2024]
Abstract
Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A mathematical investigation of polyaneuploid cancer cell memory and cross-resistance in state-structured cancer populations. Sci Rep 2023; 13:15027. [PMID: 37700000 PMCID: PMC10497555 DOI: 10.1038/s41598-023-42368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival in extreme conditions and metastasis. Recent experimental evidence suggests that post-therapy PACC-derived recurrent populations display cross-resistance to classes of therapies with independent mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or have higher levels of innate resistance. In this paper, we build on our prior mathematical models of the eco-evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two hypotheses. We show that although an increase in innate resistance is more effective at promoting cross-resistance, this trend can also be produced via PACC memory. We also find that resensitization of cells that acquire increased innate resistance through the PAT have a considerable impact on eco-evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can help inspire future experimentation to tease apart hypotheses surrounding how cross-resistance in structured cancer populations arises.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
5
|
Bukkuri A, Adler FR. Mathematical Modeling of Field Cancerization through the Lens of Cancer Behavioral Ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552382. [PMID: 37609179 PMCID: PMC10441298 DOI: 10.1101/2023.08.07.552382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Field cancerization is a process in which a normal tissue is replaced with pre-cancerous but histologically normal tissue. This transformed field can give rise to malignancy and contribute to tumor relapse. In this paper, we create a mathematical model of field cancerization from the perspective of cancer behavioral ecology. In our model, field cancerization arises from a breakdown in signaling integrity and control, and investigate implications for acute wounding, chronic wounding, aging, and therapeutic interventions. We find that restoration of communication networks can lead to cancer regression in the context of acute injury. Conversely, long term loss of controls, such as through chronic wounding or aging, can promote oncogenesis. These results are paralleled in therapeutic interventions: those that simply target cells in cancerous states may be less effective than those that reestablish signaling integrity. Viewing cancer as a corruption of communication systems rather than as a corruption of individual cells may lead to novel approaches for understanding and treating this disease.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Frederick R Adler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Mathematics, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|