1
|
Lin WC, Coyner AS, Amankwa CE, Lucero A, Wollstein G, Schuman JS, Ishikawa H. High Prevalence of Artifacts in Optical Coherence Tomography With Adequate Signal Strength. Transl Vis Sci Technol 2024; 13:43. [PMID: 39196579 PMCID: PMC11364177 DOI: 10.1167/tvst.13.8.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose This study aims to investigate the prevalence of artifacts in optical coherence tomography (OCT) images with acceptable signal strength and evaluate the performance of supervised deep learning models in improving OCT image quality assessment. Methods We conducted a retrospective study on 4555 OCT images from 546 patients, with each image having an acceptable signal strength (≥6). A comprehensive analysis of prevalent OCT artifacts was performed, and five pretrained convolutional neural network models were trained and tested to infer images based on quality. Results Our results showed a high prevalence of artifacts in OCT images with acceptable signal strength. Approximately 21% of images were labeled as nonacceptable quality. The EfficientNetV2 model demonstrated superior performance in classifying OCT image quality, achieving an area under the receiver operating characteristic curve of 0.950 ± 0.007 and an area under the precision recall curve of 0.985 ± 0.002. Conclusions The findings highlight the limitations of relying solely on signal strength for OCT image quality assessment and the potential of deep learning models in accurately classifying image quality. Translational Relevance Application of the deep learning-based OCT image quality assessment models may improve the OCT image data quality for both clinical applications and research.
Collapse
Affiliation(s)
- Wei-Chun Lin
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron S. Coyner
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles E. Amankwa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abigail Lucero
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Joel S. Schuman
- Wills Eye Hospital, Philadelphia, PA, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Drexel University School of Biomedical Engineering, Sciences and Health Systems, Philadelphia, PA, USA
| | - Hiroshi Ishikawa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology (DMICE), Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Lee T, Rivera A, Brune M, Kundu A, Haystead A, Winslow L, Kundu R, Wisely CE, Robbins CB, Henao R, Grewal DS, Fekrat S. Convolutional Neural Network-Based Automated Quality Assessment of OCT and OCT Angiography Image Maps in Individuals With Neurodegenerative Disease. Transl Vis Sci Technol 2023; 12:30. [PMID: 37389540 PMCID: PMC10318591 DOI: 10.1167/tvst.12.6.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose To train and test convolutional neural networks (CNNs) to automate quality assessment of optical coherence tomography (OCT) and OCT angiography (OCTA) images in patients with neurodegenerative disease. Methods Patients with neurodegenerative disease were enrolled in the Duke Eye Multimodal Imaging in Neurodegenerative Disease Study. Image inputs were ganglion cell-inner plexiform layer (GC-IPL) thickness maps and fovea-centered 6-mm × 6-mm OCTA scans of the superficial capillary plexus (SCP). Two trained graders manually labeled all images for quality (good versus poor). Interrater reliability (IRR) of manual quality assessment was calculated for a subset of each image type. Images were split into train, validation, and test sets in a 70%/15%/15% split. An AlexNet-based CNN was trained using these labels and evaluated with area under the receiver operating characteristic (AUC) and summaries of the confusion matrix. Results A total of 1465 GC-IPL thickness maps (1217 good and 248 poor quality) and 2689 OCTA scans of the SCP (1797 good and 892 poor quality) served as model inputs. The IRR of quality assessment agreement by two graders was 97% and 90% for the GC-IPL maps and OCTA scans, respectively. The AlexNet-based CNNs trained to assess quality of the GC-IPL images and OCTA scans achieved AUCs of 0.990 and 0.832, respectively. Conclusions CNNs can be trained to accurately differentiate good- from poor-quality GC-IPL thickness maps and OCTA scans of the macular SCP. Translational Relevance Since good-quality retinal images are critical for the accurate assessment of microvasculature and structure, incorporating an automated image quality sorter may obviate the need for manual image review.
Collapse
Affiliation(s)
- Terry Lee
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Rivera
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Matthew Brune
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Anita Kundu
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Alice Haystead
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Lauren Winslow
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Raj Kundu
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - C. Ellis Wisely
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Cason B. Robbins
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Ricardo Henao
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Dilraj S. Grewal
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Fekrat
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Arnould L, Meriaudeau F, Guenancia C, Germanese C, Delcourt C, Kawasaki R, Cheung CY, Creuzot-Garcher C, Grzybowski A. Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review. Ophthalmol Ther 2023; 12:657-674. [PMID: 36562928 PMCID: PMC10011267 DOI: 10.1007/s40123-022-00641-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The healthcare burden of cardiovascular diseases remains a major issue worldwide. Understanding the underlying mechanisms and improving identification of people with a higher risk profile of systemic vascular disease through noninvasive examinations is crucial. In ophthalmology, retinal vascular network imaging is simple and noninvasive and can provide in vivo information of the microstructure and vascular health. For more than 10 years, different research teams have been working on developing software to enable automatic analysis of the retinal vascular network from different imaging techniques (retinal fundus photographs, OCT angiography, adaptive optics, etc.) and to provide a description of the geometric characteristics of its arterial and venous components. Thus, the structure of retinal vessels could be considered a witness of the systemic vascular status. A new approach called "oculomics" using retinal image datasets and artificial intelligence algorithms recently increased the interest in retinal microvascular biomarkers. Despite the large volume of associated research, the role of retinal biomarkers in the screening, monitoring, or prediction of systemic vascular disease remains uncertain. A PubMed search was conducted until August 2022 and yielded relevant peer-reviewed articles based on a set of inclusion criteria. This literature review is intended to summarize the state of the art in oculomics and cardiovascular disease research.
Collapse
Affiliation(s)
- Louis Arnould
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France. .,University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, 33000, Bordeaux, France.
| | - Fabrice Meriaudeau
- Laboratory ImViA, IFTIM, Université Bourgogne Franche-Comté, 21078, Dijon, France
| | - Charles Guenancia
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases, (EA 7460), Faculty of Health Sciences, Université de Bourgogne Franche-Comté, Dijon, France.,Cardiology Department, Dijon University Hospital, Dijon, France
| | - Clément Germanese
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, 33000, Bordeaux, France
| | - Ryo Kawasaki
- Artificial Intelligence Center for Medical Research and Application, Osaka University Hospital, Osaka, Japan
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Catherine Creuzot-Garcher
- Ophthalmology Department, Dijon University Hospital, 14 Rue Paul Gaffarel, 21079, Dijon CEDEX, France.,Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznan, Poland
| |
Collapse
|
4
|
Optical Coherence Tomography Angiography of the Intestine: How to Prevent Motion Artifacts in Open and Laparoscopic Surgery? Life (Basel) 2023; 13:life13030705. [PMID: 36983861 PMCID: PMC10055682 DOI: 10.3390/life13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Introduction. The problem that limits the intraoperative use of OCTA for the intestinal circulation diagnostics is the low informative value of OCTA images containing too many motion artifacts. The aim of this study is to evaluate the efficiency and safety of the developed unit for the prevention of the appearance of motion artifacts in the OCTA images of the intestine in both open and laparoscopic surgery in the experiment; (2) Methods. A high-speed spectral-domain multimodal optical coherence tomograph (IAP RAS, Russia) operating at a wavelength of 1310 nm with a spectral width of 100 μm and a power of 2 mW was used. The developed unit was tested in two groups of experimental animals—on minipigs (group I, n = 10, open abdomen) and on rabbits (group II, n = 10, laparoscopy). Acute mesenteric ischemia was modeled and then 1 h later the small intestine underwent OCTA evaluation. A total of 400 OCTA images of the intact and ischemic small intestine were obtained and analyzed. The quality of the obtained OCTA images was evaluated based on the score proposed in 2020 by the group of Magnin M. (3) Results. Without stabilization, OCTA images of the intestine tissues were informative only in 32–44% of cases in open surgery and in 14–22% of cases in laparoscopic surgery. A vacuum bowel stabilizer with a pressure deficit of 22–25 mm Hg significantly reduced the number of motion artifacts. As a result, the proportion of informative OCTA images in open surgery increased up to 86.5% (Χ2 = 200.2, p = 0.001), and in laparoscopy up to 60% (Χ2 = 148.3, p = 0.001). (4) Conclusions. The used vacuum tissue stabilizer enabled a significant increase in the proportion of informative OCTA images by significantly reducing the motion artifacts.
Collapse
|
5
|
Deep Learning in Optical Coherence Tomography Angiography: Current Progress, Challenges, and Future Directions. Diagnostics (Basel) 2023; 13:diagnostics13020326. [PMID: 36673135 PMCID: PMC9857993 DOI: 10.3390/diagnostics13020326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Optical coherence tomography angiography (OCT-A) provides depth-resolved visualization of the retinal microvasculature without intravenous dye injection. It facilitates investigations of various retinal vascular diseases and glaucoma by assessment of qualitative and quantitative microvascular changes in the different retinal layers and radial peripapillary layer non-invasively, individually, and efficiently. Deep learning (DL), a subset of artificial intelligence (AI) based on deep neural networks, has been applied in OCT-A image analysis in recent years and achieved good performance for different tasks, such as image quality control, segmentation, and classification. DL technologies have further facilitated the potential implementation of OCT-A in eye clinics in an automated and efficient manner and enhanced its clinical values for detecting and evaluating various vascular retinopathies. Nevertheless, the deployment of this combination in real-world clinics is still in the "proof-of-concept" stage due to several limitations, such as small training sample size, lack of standardized data preprocessing, insufficient testing in external datasets, and absence of standardized results interpretation. In this review, we introduce the existing applications of DL in OCT-A, summarize the potential challenges of the clinical deployment, and discuss future research directions.
Collapse
|