1
|
Di Grazia G, Conti C, Nucera S, Motta G, Martorana F, Stella S, Massimino M, Giuliano M, Vigneri P. REThinking the role of the RET oncogene in breast cancer. Front Oncol 2024; 14:1427228. [PMID: 39211557 PMCID: PMC11358597 DOI: 10.3389/fonc.2024.1427228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The REarranged during Transfection (RET) receptor tyrosine kinase plays a crucial role in the development of various anatomical structures during embryogenesis and it is involved in many physiological cellular processes. This protein is also associated with the initiation of various cancer types, such as thyroid cancer, non-small cell lung cancer, and multiple endocrine neoplasms. In breast cancer, and especially in the estrogen receptor-positive (ER+) subtype, the activity of RET is of notable importance. Indeed, RET seems to be involved in tumor progression, resistance to therapies, and cellular proliferation. Nevertheless, the ways RET alterations could impact the prognosis of breast cancer and its response to treatment remain only partially elucidated. Several inhibitors of RET kinase have been developed thus far, with various degrees of selectivity toward RET inhibition. These molecules showed notable efficacy in the treatment of RET-driven tumors, including some breast cancer cases. Despite these encouraging results, further investigation is needed to fully understand the potential role RET inhibition in breast cancer. This review aims to recapitulate the existing evidence about the role of RET oncogene in breast cancer, from its pathogenic and potentially prognostic role, to the clinical applications of RET inhibitors.
Collapse
Affiliation(s)
- Giuseppe Di Grazia
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Chiara Conti
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Sabrina Nucera
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Gianmarco Motta
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
2
|
Frett B, Stephens KE, Koss B, Melnyk S, Farrar J, Saha D, Roy Choudhury S. Enhancer-activated RET confers protection against oxidative stress to KMT2A-rearranged acute myeloid leukemia. Cancer Sci 2024; 115:963-973. [PMID: 38226414 PMCID: PMC10920984 DOI: 10.1111/cas.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Brendan Frett
- Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kimberly E. Stephens
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Infectious Diseases, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Brian Koss
- Department of Biochemistry & Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Stepan Melnyk
- Arkansas Children's Research InstituteLittle RockArkansasUSA
| | - Jason Farrar
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Hematology/Oncology, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Debasmita Saha
- Sanford Burnham Presbys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Samrat Roy Choudhury
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Hematology/Oncology, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
3
|
Lucena-Padros H, Bravo-Gil N, Tous C, Rojano E, Seoane-Zonjic P, Fernández RM, Ranea JAG, Antiñolo G, Borrego S. Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease. Biomolecules 2024; 14:164. [PMID: 38397401 PMCID: PMC10886964 DOI: 10.3390/biom14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
Collapse
Affiliation(s)
- Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
4
|
Bhandari NR, Gilligan AM, Myers J, Ale-Ali A, Smolen L. Integrated budget impact model to estimate the impact of introducing selpercatinib as a tumor-agnostic treatment option for patients with RET-altered solid tumors in the US. J Med Econ 2024; 27:348-358. [PMID: 38334069 DOI: 10.1080/13696998.2024.2317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To estimate the potential budget impact on US third party payers (commercial or Medicare) associated with addition of selpercatinib as a tumor-agnostic treatment for patients with Rearranged during Transfection (RET)-altered solid tumors. METHODS An integrated budget impact model (iBIM) with 3-year (Y) time horizon was developed for 19 RET-altered tumors. It is referred to as an integrated model because it is a single model that integrated results across multiple tumor types (as opposed to tumor-specific models developed traditionally). The model estimated eligible patient populations and included tumor-specific comparator treatments for each tumor type. Estimated annual total costs (2022USD, $) included costs of drug, administration, supportive care, and toxicity. For a one-million-member plan, the number of patients with RET-altered tumors eligible for treatment, incremental total costs, and incremental per-member per-month (PMPM) costs associated with introduction of selpercatinib treatment were estimated. Uncertainty associated with model parameters was assessed using various sensitivity analyses. RESULTS Commercial perspective estimated 11.68 patients/million with RET-altered tumors as treatment-eligible annually, of which 7.59 (Y1), 8.17 (Y2), and 8.76 (Y3) patients would be selpercatinib-treated (based on forecasted market share). The associated incremental total and PMPM costs (commercial) were estimated to be: $873,099 and $0.073 (Y1), $2,160,525 and $0.180 (Y2), and $2,561,281 and $0.213 (Y3), respectively. The Medicare perspective estimated 55.82 patients/million with RET-altered tumors as treatment-eligible annually, of which 36.29 (Y1), 39.08 (Y2), and 41.87 (Y3) patients would be selpercatinib-treated. The associated incremental total and PMPM costs (Medicare) were estimated to be: $4,447,832 and $0.371 (Y1), $11,076,422 and $0.923 (Y2), and $12,637,458 and $1.053 (Y3), respectively. One-way sensitivity analyses across both perspectives identified drug costs, selpercatinib market share, incidence of RET, and treatment duration as significant drivers of incremental costs. CONCLUSIONS Three-year incremental PMPM cost estimates suggest a modest impact on payer-budgets associated with introduction of tumor-agnostic selpercatinib treatment.
Collapse
Affiliation(s)
| | | | - Julie Myers
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| | | | - Lee Smolen
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| |
Collapse
|
5
|
Nagasaka M, Brazel D, Baca Y, Xiu J, Al-Hallak MN, Kim C, Nieva J, Swensen JJ, Spetzler D, Korn WM, Socinski MA, Raez LE, Halmos B, Ou SHI. Pan-tumor survey of RET fusions as detected by next-generation RNA sequencing identified RET fusion positive colorectal carcinoma as a unique molecular subset. Transl Oncol 2023; 36:101744. [PMID: 37516008 PMCID: PMC10410168 DOI: 10.1016/j.tranon.2023.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND RET fusions are driver alterations in cancer and are most commonly found in non-small cell lung cancer and well-differentiated thyroid cancer. However, RET fusion have been reported in other solid tumors. MATERIAL AND METHODS A retrospective analysis of RET+ solid malignancies identified by targeted RNA sequencing and whole transcriptome sequencing of clinical tumor samples performed at Caris Life Science (Phoenix, AZ). RESULTS As of March 22, 2022, a total of 378 RET+ solid malignancies were identified in 15 different tumor types and carcinoma of unknown primary (CUP) that underwent next-generation RNA sequencing. RET+ NSCLC and RET+ thyroid cancer constituted 66.9% and 11.1% of the RET+ solid malignancies, respectively. RET+ colorectal adenocarcinoma and RET+ breast adenocarcinoma constituted 10.1% and 2.6%, respectively. The estimated frequency of RET fusions within specific tumor types were NSCLC 0.7%, thyroid cancer 3.1%, colorectal cancer 0.2% and breast cancer 0.1%. KIF5B (46.8%) was the most common fusion partner followed by CCDC6 (28.3%) and NCOA4 (13.8%) in RET+ solid tumors. KIF5B-RET was the dominant fusion variant in RET+ NSCLC, NCOA4-RET was the dominant variant in RET+ colorectal carcinoma, and CCDC6-RET was the dominant variant in thyroid cancer. The most common single gene alterations in RET+ tumors were TP53 (34.8%), RASA1 (14.3%) and ARIAD1A (11.6%). RET+ CRC had a high median TMB of 20.0 and were commonly MSI-H. CONCLUSIONS RET fusions were identified in multiple tumor types. With a higher median TMB and commonly MSI-H, RET fusion positive CRC may be a unique molecular subset of CRC.
Collapse
Affiliation(s)
- Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA, USA; Chao Family Comprehensive Cancer Center, Orange, CA, USA; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Danielle Brazel
- University of California Irvine School of Medicine, Orange, CA, USA
| | | | | | | | - Chul Kim
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Jorge Nieva
- USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | - Luis E Raez
- Memorial Healthcare System, Pembroke Pines, FL, USA
| | | | - Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Orange, CA, USA; Chao Family Comprehensive Cancer Center, Orange, CA, USA
| |
Collapse
|
6
|
Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-Altered Cancers-A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers (Basel) 2023; 15:4146. [PMID: 37627175 PMCID: PMC10452615 DOI: 10.3390/cancers15164146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
RET alterations, such as fusions or mutations, drive the growth of multiple tumor types. These alterations are found in canonical (lung and thyroid) and non-canonical (e.g., gastrointestinal, breast, gynecological, genitourinary, histiocytic) cancers. RET alterations are best identified via comprehensive next-generation sequencing, preferably with DNA and RNA interrogation for fusions. Targeted therapies for RET-dependent cancers have evolved from older multikinase inhibitors to selective inhibitors of RET such as selpercatinib and pralsetinib. Prospective basket trials and retrospective reports have demonstrated the activity of these drugs in a wide variety of RET-altered cancers, notably those with RET fusions. This paved the way for the first tumor-agnostic selective RET inhibitor US FDA approval in 2022. Acquired resistance to RET kinase inhibitors can take the form of acquired resistance mutations (e.g., RET G810X) or bypass alterations.
Collapse
Affiliation(s)
- Antoine Desilets
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Eric J. Sherman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
7
|
FOXA2 and STAT5A regulate oncogenic activity of KIF5B-RET fusion. Am J Cancer Res 2023; 13:638-653. [PMID: 36895965 PMCID: PMC9989603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/19/2023] [Indexed: 03/11/2023] Open
Abstract
KIF5B-RET gene rearrangement occurs in ~1% of lung adenocarcinomas. Recently, targeted agents that inhibit RET phosphorylation have been evaluated in several clinical studies; however, little is known about the role of this gene fusion in driving lung cancer. Immunohistochemistry was used to evaluate the expression of the FOXA2 protein in tumor tissues of patients with lung adenocarcinoma. KIF5B-RET fusion cells proliferated in a cohesive form and grew tightly packed with variable-sized colonies. The expression of RET and its downstream signaling molecules, including p-BRAF, p-ERK, and p-AKT, increased. In KIF5B-RET fusion cells, the intracellular expression of p-ERK was higher in the cytoplasm than in the nucleus. Two transcription factors, STAT5A and FOXA2, exhibiting significantly different expressions at the mRNA level, were finally selected. p-STAT5A was highly expressed in the nucleus and cytoplasm, whereas the expression of the FOXA2 protein was lower; however, it was much higher in the nucleus than in the cytoplasm. Compared with the expression of FOXA2 in the RET rearrangement-wild NSCLC (45.0%), high expression (3+) were observed in most RET rearrangement NSCLCs (94.4%). Meanwhile, KIF5B-RET fusion cells began to increase belatedly from day 7 and only doubled on day 9 in 2D cell culture. However, tumors in mice injected with KIF5B-RET fusion cells began to rapidly increase from day 26. In cell cycle analyses, the KIF5B-RET fusion cells in G0/G1 were increased on day 4 (50.3 ± 2.6%) compared with the empty cells (39.3 ± 5.2%; P = 0.096). Cyclin D1 and E2 expressions were reduced, whereas CDK2 expression slightly increased. pRb and p21 expression was diminished compared with the empty cells, TGF-β1 mRNA was highly expressed, and the proteins were accumulated mostly in the nucleus. Twist mRNA and protein expression was increased, whereas Snail mRNA and protein expression was decreased. Particularly, in KIF5B-RET fusion cells treated with FOXA2 siRNA, the expression of TGF-β 1 mRNA was remarkably reduced but Twist1 and Snail mRNA were increased. Our data suggest that cell proliferation and invasiveness in KIF5B-RET fusion cells are regulated by the upregulation of STAT5A and FOXA2 through the continuous activation of multiple RET downstream signal cascades, including the ERK and AKT signaling pathways. We found that TGF-β1 mRNA, where significant increments were observed in KIF5B-RET fusion cells, is regulated at the transcriptional level by FOXA2.
Collapse
|