1
|
Fang Q, Chen X, Cao F, Xu P, Zhao Z, Lin R, Wu D, Deng W, Liu X. SPHK1 promotes HNSCC immune evasion by regulating the MMP1-PD-L1 axis. THERANOSTICS 2024; 14:7199-7218. [PMID: 39629135 PMCID: PMC11610131 DOI: 10.7150/thno.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024]
Abstract
Rationale: Immune checkpoint inhibitors (ICIs) have demonstrated significant efficacy against head and neck squamous cell carcinoma (HNSCC), but their overall response rate (ORR) remains limited. Previous studies have highlighted the crucial role of sphingosine kinases (SPHKs) in the tumor microenvironment (TME); however, their function in immunotherapy remains unclear. Methods: We conducted comprehensive bioinformatics analysis, functional studies, and clinical validation, to investigate the role of SPHK1 in the immunology of HNSCC. Results: Functionally, SPHK1 significantly promoted tumor growth by inhibiting anti-tumor immunity in immune-competent HNSCC mouse models and tumor-T cell co-cultures. Mechanistic analysis revealed that SPHK1 regulated matrix metalloproteinase-1 (MMP1) expression via the MAPK1 pathway, which subsequently influenced tumor programmed cell death ligand 1 (PD-L1) expression. Furthermore, SPHK1 and MMP1 could predict the efficacy of programmed cell death 1 monoclonal antibody (PD-1 mAb) immunotherapy in HNSCC and were independent risk factors for survival in patients with HNSCC. Conclusion: Our study reveals a novel role for SPHK1 in mediating immune evasion in HNSCC through the regulation of the MMP1-PD-L1 axis. We identified SPHK1 and MMP1 as predictive biomarkers for the therapeutic response to PD-1 mAb and provided new therapeutic targets for patients with HNSCC.
Collapse
Affiliation(s)
- Qi Fang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Xiao Chen
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Fei Cao
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Pengfei Xu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Zheng Zhao
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Roubin Lin
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Di Wu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Wuguo Deng
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| | - Xuekui Liu
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Ye Y, Dai L, Mugaanyi J, Fu W, Hu F. Novel insights into the pathogenesis of thyroid eye disease through ferroptosis-related gene signature and immune infiltration analysis. AGING 2024; 16:6008-6034. [PMID: 38536014 PMCID: PMC11042930 DOI: 10.18632/aging.205685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 04/23/2024]
Abstract
Thyroid eye disease (TED) has brought great physical and mental trauma to patients worldwide. Although a few potential signaling pathways have been reported, knowledge of TED remains limited. Our objective is to explore the fundamental mechanism of TED and identify potential therapeutic targets using diverse approaches. To perform a range of bioinformatic analyses, such as identifying differentially expressed genes (DEGs), conducting enrichment analysis, establishing nomograms, analyzing weighted gene correlation network analysis (WGCNA), and studying immune infiltration, the datasets GSE58331, GSE105149, and GSE9340 were integrated. Further validation was conducted using qPCR, western blot, and immunohistochemistry techniques. Eleven ferroptosis-related DEGs derived from the lacrimal gland were originally screened. Their high diagnostic value was proven, and diagnostic prediction nomogram models with high accuracy and robustness were established by using machine learning. A total of 15 hub gene-related DEGs were identified by WGCNA. Through CIBERSORTx, we uncovered five immune cells highly correlated with TED and found several special associations between these immune cells and the above DEGs. Furthermore, EGR2 from the thyroid sample was revealed to be closely negatively correlated with most DEGs from the lacrimal gland. High expression of APOD, COPB2, MYH11, and MYCN, as well as CD4/CD8 T cells and B cells, was verified in the periorbital adipose tissues of TED patients. To summarize, we discovered a new gene signature associated with ferroptosis that has a critical impact on the development of TED and provides valuable insights into immune infiltration. These findings might highlight the new direction and therapeutic strategies of TED.
Collapse
Affiliation(s)
- Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China
| | - Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China
| | - Joseph Mugaanyi
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China
| | - Weina Fu
- Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China
| | - Feng Hu
- Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
4
|
Kakuguchi W, Kitamura T, Takahashi T, Yanagawa-Matsuda A, Fang CY, Ohiro Y, Higashino F. Human antigen R knockdown attenuates the invasive activity of oral cancer cells through inactivation of matrix metalloproteinase-1 gene expression. JOURNAL OF DENTAL SCIENCES 2024; 19:154-161. [PMID: 38303892 PMCID: PMC10829560 DOI: 10.1016/j.jds.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/11/2023] [Indexed: 02/03/2024]
Abstract
Background/purpose The RNA-binding protein human antigen R (HuR) recognizes AU-rich elements in the 3'-untranslated regions of mRNA. The expression of cytoplasmic HuR is related to the malignancy of many carcinomas. The aim of this study is investigation of effect of HuR knockdown for invasive activity of oral carcinoma. Materials and methods Proliferation, invasion, real-time PCR, and reporter gene assays were performed to confirm that the knockdown of HuR downregulates the invasive activity of cancer cells. Immunohistochemical staining was performed for high invasive carcinoma, squamous cell carcinoma (SCC) and low invasive carcinoma, verrucous carcinoma (VC), to determine if the localization of cytoplasmic HuR is related to matrix metalloproteinase-1 (MMP-1) expression. Results Invasive activity was significantly lower in HuR knockdown cancer cells than in control cells. A luciferase assay revealed that HuR knockdown inactivated the promoter activity of the MMP-1 gene. The mRNA levels of the transcription factors required for MMP-1 expression, including c-fos and c-jun, were decreased in HuR knockdown cancer cells. Immunohistochemical analysis revealed the level of cytoplasmic HuR and MMP-1 in invasive carcinoma to be higher than in low invasive cancer. HuR induced MMP-1 expression in the invasive front of most SCC cases. Conclusion HuR knockdown attenuated the invasive activity of cancer cells by decreasing the expression of the MMP-1, at least partially. HuR localization may help determine the invasive phenotype of cancer cells and inhibit cancer cell invasion. Furthermore, in oral SCC, HuR may be related to invasive activity through the expression of MMP-1.
Collapse
Affiliation(s)
- Wataru Kakuguchi
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Oral Pathology Diagnostic Clinic, Sapporo, Japan
| | - Tomomi Takahashi
- Support Section for Education and Research, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Chih-Yuan Fang
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Fejza A, Carobolante G, Poletto E, Camicia L, Schinello G, Di Siena E, Ricci G, Mongiat M, Andreuzzi E. The entanglement of extracellular matrix molecules and immune checkpoint inhibitors in cancer: a systematic review of the literature. FRONTIERS IN IMMUNOLOGY 2023; 14:1270981. [PMID: 37854588 PMCID: PMC10579931 DOI: 10.3389/fimmu.2023.1270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Introduction Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar of cancer therapy as single agents or in combination regimens both in adults and children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one third of the patients. Thus, the search for predictive biomarkers of responsiveness to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly affected not only by the specific characteristics of cancer cells and the levels of immune checkpoint ligands, but also by other components of the tumor microenvironment, among which the extracellular matrix (ECM) is emerging as key player. With the aim to comprehensively describe the relation between ECM and ICIs' efficacy in cancer patients, the present review systematically evaluated the current literature regarding ECM remodeling in association with immunotherapeutic approaches. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022351180). PubMed, Web of Science, and Scopus databases were comprehensively searched from inception to January 2023. Titles, abstracts and full text screening was performed to exclude non eligible articles. The risk of bias was assessed using the QUADAS-2 tool. Results After employing relevant MeSH and key terms, we identified a total of 5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries were found and excluded. Following title and abstract screening, the full text was analyzed, and 47 studies meeting the eligibility criteria were retained. The studies included in this systematic review comprehensively recapitulate the latest observations associating changes of the ECM composition following remodeling with the traits of the tumor immune cell infiltration. The present study provides for the first time a broad view of the tight association between ECM molecules and ICIs efficacy in different tumor types, highlighting the importance of ECM-derived proteolytic products as promising liquid biopsy-based biomarkers to predict the efficacy of ICIs. Conclusion ECM remodeling has an important impact on the immune traits of different tumor types. Increasing evidence pinpoint at ECM-derived molecules as putative biomarkers to identify the patients that would most likely benefit from ICIs treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351180, identifier CRD42022351180.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Biochemistry, Faculty of Medical Sciences, UBT-Higher Education Institute, Prishtina, Kosovo
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
6
|
Stoks M, Vieco-Martí I, Noguera I, Sánchez-Sánchez M, Burgos-Panadero R, Navarro S, Noguera R. Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma. COMPUTERS IN BIOLOGY AND MEDICINE 2023; 164:107364. [PMID: 37598482 DOI: 10.1016/j.compbiomed.2023.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Digital pathology and artificial intelligence are promising emerging tools in precision oncology as they provide more robust and reproducible analysis of histologic, morphologic and topologic characteristics of tumor cells and the surrounding microenvironment. This study aims to develop digital image analysis workflows for therapeutic assessment in preclinical in vivo models. For this purpose, we generated pipelines that enable automatic detection and quantification of vitronectin and αvβ3 in heterotopic high-risk neuroblastoma xenografts, demonstrating that digital analysis workflows can be used to provide robust detection of vitronectin secretion and αvβ3 expression by malignant neuroblasts and to evaluate the possibility of combining traditional chemotherapy (etoposide) with extracellular matrix-targeted therapies (cilengitide). Digital image analysis added evidence for the relevance of territorial vitronectin as a therapeutic target in neuroblastoma, since its expression is modified after treatment, with a mean percentage of 60.44% in combined therapy tumors vs 45.08% in control ones. In addition, the present study revealed the efficacy of cilengitide for reducing αvβ3 expression, with a mean αvβ3 positivity of 34.17% in cilengitide treated material vs 66.14% in control and with less tumor growth when combined with etoposide, with a final mean volume of 0.04 cm3 in combined therapy vs 1.45 cm3 in control. The results of this work highlight the importance of extracellular matrix-focused therapies in preclinical studies to improve therapeutic assessment for high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- M Stoks
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain
| | - I Vieco-Martí
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - I Noguera
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain
| | - M Sánchez-Sánchez
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - R Burgos-Panadero
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - S Navarro
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - R Noguera
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain.
| |
Collapse
|
7
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
8
|
Wu D, Cai Q, Liu D, Zuo G, Li S, Liu L, Zheng J. Identification of molecular subtypes and prognostic signatures based on transient receptor potential channel-related genes to predict the prognostic risk of hepatocellular carcinoma: A review. MEDICINE 2023; 102:e33228. [PMID: 36897679 PMCID: PMC9997768 DOI: 10.1097/md.0000000000033228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Abnormal transient receptor potential (TRP) channel function interferes with intracellular calcium-based signaling and causes malignant phenotypes. However, the effects of TRP channel-related genes on hepatocellular carcinoma (HCC) remain unclear. This study aimed to identify HCC molecular subtypes and prognostic signatures based on TRP channel-related genes to predict prognostic risks. Unsupervised hierarchical clustering was applied to identify HCC molecular subtypes using the expression data of TRP channel-related genes. This was followed by a comparison of the clinical and immune microenvironment characteristics between the resulting subtypes. After screening for differentially expressed genes among subtypes, prognostic signatures were identified to construct risk score-based prognostic and nomogram models and predict HCC survival. Finally, tumor drug sensitivities were predicted and compared between the risk groups. Sixteen TRP channel-related genes that were differentially expressed between HCC and non-tumorous tissues were used to identify 2 subtypes. Cluster 1 had higher TRP scores, better survival status, and lower levels of clinical malignancy. Immune-related analyses also revealed higher infiltration of M1 macrophages and higher immune and stromal scores in Cluster 1 than in Cluster 2. After screening differentially expressed genes between subtypes, 6 prognostic signatures were identified to construct prognostic and nomogram models. The potential of these models to assess the prognostic risk of HCC was further validated. Furthermore, Cluster 1 was more distributed in the low-risk group, with higher drug sensitivities. Two HCC subtypes were identified, of which Cluster 1 was associated with a favorable prognosis. Prognostic signatures related to TRP channel genes and molecular subtypes can be used to predict HCC risk.
Collapse
Affiliation(s)
- Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Qingshan Cai
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Dong Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Ganggang Zuo
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Shudong Li
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Liyou Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| |
Collapse
|
9
|
Mao S, Xia A, Tao X, Ye D, Qu J, Sun M, Wei H, Li G. A pan-cancer analysis of the prognostic and immunological roles of matrix metalloprotease-1 (MMP1) in human tumors. FRONTIERS IN ONCOLOGY 2023; 12:1089550. [PMID: 36727076 PMCID: PMC9885257 DOI: 10.3389/fonc.2022.1089550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
Objective Cancer remains the leading killer of human health worldwide. It has been shown that matrix metalloproteinase-1(MMP1) is related to poor prognosis in cancers such as BRCA, CESC and COAD. However, systematic pan-cancer analysis about the prognostic and immunological roles of MMP1 has not been explored. Here, the purpose of this study was to investigate the prognostic and immunological roles of MMP1 in pan-cancer and confirm cancer-promoting effect in pancreatic cancer. Methods In our study, bioinformatics were first used to analyze data from multiple databases. Then, several bioinformatics tools were utilized to investigate the role of MMP1 in 33 tumor types. Finally, molecular biology experiments were carried out to prove the cancer-promoting effect of MMP1 in pancreatic cancer. Results MMP1 expression was higher in tumor tissues than in control tissues in most tumor types. High expression of MMP1 was associated with poor overall survival (OS) and disease-free survival (DFS) in some tumor types. Further analysis of MMP1 gene mutation data showed that MMP1 mutations significantly influenced the prognosis of STAD. In addition, MMP1 expression was closely related to cancer-associated fibroblast (CAFs) infiltration in a variety of cancers and played an important role on immune infiltration score, tumor mutational burden (TMB) and microsatellite instability (MSI). Gene Ontology enrichment analysis indicated that these 20 genes were mainly related to extracellular structure organization/extracellular matrix organization/extracellular matrix disassembly/collagen metabolic process in the enriched biological processes. Finally, molecular biology experiments confirmed the cancer-promoting effect of MMP1 in pancreatic cancer. Conclusions Our pan-cancer analysis comprehensively proved that MMP1 expression is related with clinical prognosis and tumor immune infiltration, and MMP1 can become a prognostic and immunological biomarker.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Dingde Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiamu Qu
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China,*Correspondence: Guoqiang Li,
| |
Collapse
|
10
|
Radmanić L, Korać P, Gorenec L, Šimičić P, Bodulić K, Vince A, Lepej SŽ. Distinct Expression Patterns of Genes Coding for Biological Response Modifiers Involved in Inflammatory Responses and Development of Fibrosis in Chronic Hepatitis C: Upregulation of SMAD-6 and MMP-8 and Downregulation of CAV-1, CTGF, CEBPB, PLG, TIMP-3, MMP-1, ITGA-1, ITGA-2 and LOX. MEDICINA 2022; 58:medicina58121734. [PMID: 36556936 PMCID: PMC9785468 DOI: 10.3390/medicina58121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: The aim of this study was to analyze the expression of genes on transcriptomic levels involved in inflammatory immune responses and the development of fibrosis in patients with chronic hepatitis C. Materials and Methods: Expression patterns of 84 selected genes were analyzed with real-time quantitative RT PCR arrays in the peripheral blood of treatment-naive patients with chronic hepatitis C and healthy controls. The panel included pro- and anti-fibrotic genes, genes coding for extracellular matrix (EMC) structural constituents and remodeling enzymes, cell adhesion molecules, inflammatory cytokines, chemokines and growth factors, signal transduction members of the transforming growth factor- beta (TGF-ß) superfamily, transcription factors, and genes involved in epithelial to mesenchymal transition. Results: The expression of SMAD-6 coding for a signal transduction TGF-beta superfamily member as well as MMP-8 coding for an ECM protein were significantly increased in CHC patients compared with controls. Conclusions: Chronic hepatitis C was also characterized by a significant downregulation of a set of genes including CAV-1, CTGF, TIMP-3, MMP-1, ITGA-1, LOX, ITGA-2, PLG and CEBPB encoding various biological response modifiers and transcription factors. Our results suggest that chronic hepatitis C is associated with distinct patterns of gene expression modulation in pathways associated with the regulation of immune responses and development of fibrosis.
Collapse
Affiliation(s)
- Leona Radmanić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Šimičić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Adriana Vince
- Department of Viral Hepatitis, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Snježana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-2826-625
| |
Collapse
|