1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Mbaeze BC, Ekere NR, Chukwu CS, Ominyi OK, Ihedioha JN. Harnessing Moringa oleifera root powder (MORP) for the sustainable remediation of heavy metal contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39373193 DOI: 10.1080/15226514.2024.2405627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Heavy metal environmental pollution is rapidly increasing due to the increase in industrialization and urbanization. Industrial processes, such as paint production, mining, and raw materials producing industries release effluents rich in heavy metals, like Pb2+, Cd2+, Cu2+, and Cr3+. These heavy metals are dangerous because they persist in nature, are non-biodegradable and they have high tendency to accumulate in the environment and in living organisms who are exposed to them. This work studied the removal of heavy metals (Cu, Pb, Cr, and Cd) from aqueous solution using Moringa oleifera root powder (MORP) as the adsorbent. The MORP was characterized by SEM, FTIR, BET, and XRD. Batch adsorption experiments carried out investigated the effects of adsorbate concentration, adsorbent dosage, agitation time, pH and temperature on adsorption. The optimum parameters are: contact time (90 min); pH (9); adsorbent dose (0.6); metal ion concentration (30 mg L-1) for Cr and 40 mg L-1 for the rest; and temperature (50 °C) for Cu and Pb, and 70 °C for Cr and Cd. These experimental data were analyzed with 5 isotherm models (Temkin, Flory-Huggins, Langmuir, D-R and Freundlich). The result obtained fitted best to Temkin isotherm in comparison to others. Kinetic studies revealed that the pseudo-second order kinetic model best described the adsorption (with high R2 values ranging from 0.9810-0.9976) compared to pseudo-first order and intra-particle diffusion kinetics model. Results of the thermodynamic study showed that the sorption process was endothermic for Cu and Pb, but exothermic for Cd and Cr. The adsorbent showed good adsorptive tendencies toward the ions studied, and could be applied on an industrial scale for the remediation of metal contaminated water.
Collapse
Affiliation(s)
| | - Nwachukwu Romanus Ekere
- Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, Nsukka, Enugu State, Nigeria
| | - Chioma Sarah Chukwu
- Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, Nsukka, Enugu State, Nigeria
| | - Oga Kingsley Ominyi
- Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, Nsukka, Enugu State, Nigeria
| | | |
Collapse
|
3
|
Jeong H, Lee DW, Kim J, Bae SE. Simultaneous removal and separate recovery of radioactive Cs + and I - ions from wastewater using a reusable bifunctional composite, Ni@Pt/K 2NiFe(CN) 6. Heliyon 2024; 10:e37134. [PMID: 39286105 PMCID: PMC11403085 DOI: 10.1016/j.heliyon.2024.e37134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Radioactive Cs+ and I- ions are major components of nuclear wastewater, typically existing as counter ions. Due to their high water solubility and mobility, these ions can spread through contaminated water and soil into ecosystems, necessitating continuous removal and management. In this study, we synthesized a reusable bifunctional Ni@Pt/K2NiFe(CN)6 composite that can simultaneously remove radioactive Cs+ and I- ions and, for the first time, enable their separate recovery in aqueous solutions. In this material, K2NiFe(CN)6 acted as an electrochemically switched ion exchanger, controlling the adsorption/desorption of Cs+, while Pt enabled the spontaneous adsorption and electrochemical desorption of I-, and the magnetic Ni core allowed for efficient adsorbent recovery. The adsorption isotherms of both Cs+ and I- were best fitted using the Langmuir model, and the corresponding adsorption capacities were comparable to those of conventional adsorbents used for the separate removal of Cs+ and I-. Furthermore, the composite demonstrated stability over 100 sorption cycles, maintaining high recovery efficiencies of 97.9 % for Cs+ and 99.7 % for I-, thereby proving its reusability. Thus, the developed composite holds great promise for radioactive wastewater treatment and environmental restoration.
Collapse
Affiliation(s)
- Hwakyeung Jeong
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 989-111 Daedeok- daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Dong Woo Lee
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 989-111 Daedeok- daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Jihye Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 989-111 Daedeok- daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Sang-Eun Bae
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 989-111 Daedeok- daero, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Liaquat I, Munir R, Abbasi NA, Sadia B, Muneer A, Younas F, Sardar MF, Zahid M, Noreen S. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123922. [PMID: 38580064 DOI: 10.1016/j.envpol.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Water scarcity has become a critical global concern exacerbated by population growth, globalization, and industrial expansion, resulting in the production of wastewater containing a wide array of contaminants. Tackling this challenge necessitates the adoption of innovative materials and technologies for effective wastewater treatment. This review article provides a comprehensive exploration of the preparation, applications, mechanisms, and economic environmental analysis of zeolite-based composites in wastewater treatment. Zeolite, renowned for its versatility and porous nature, is of paramount importance due to its exceptional properties, including high surface area, ion exchange capability, and adsorption capacity. Various synthetic methods for zeolite-based composites are discussed. The utilization of zeolites in wastewater treatment, particularly in adsorption and photocatalysis, is thoroughly investigated. The significance of zeolite in adsorption and its role in the photocatalytic degradation of pollutants are examined, along with its applications in treating volatile organic compounds (VOCs), dye wastewater, oil-field wastewater, and radioactive waste. Mechanisms underlying zeolite-based adsorption and photocatalysis, including physical and chemical adsorption, ion exchange, and surface modification, are elucidated. Additionally, the role of micropores in the adsorption process is explored. Furthermore, the review delves into regeneration and desorption studies of zeolite-based composites, crucial for sustainable wastewater treatment practices. Economic and environmental analyses are conducted to assess the feasibility and sustainability of employing zeolite-based composites in wastewater treatment applications. Future recommendations are provided to guide further research and development in the field of zeolite-based composites, aiming to enhance wastewater treatment efficiency and environmental sustainability. By exploring the latest advancements and insights into zeolite-based nanocomposites, this paper aims to contribute to the development of more efficient and sustainable wastewater treatment strategies. The integration of zeolite-based materials in wastewater treatment processes shows promise for mitigating water pollution and addressing water scarcity challenges, ultimately contributing to environmental preservation and public health protection.
Collapse
Affiliation(s)
- Iqra Liaquat
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Naseer Ahmed Abbasi
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Gatea MA, Jumaah GF, Al Anbari RH, Alsalhy QF. Decontaminating liquid-containing Cs-137 by natural Pumice stone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107342. [PMID: 38008048 DOI: 10.1016/j.jenvrad.2023.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Radionuclides, emanating as consequential by-products of nuclear operations, are recognized as a potent source of environmentally deleterious contamination. In light of these concerns, the present investigation has employed unmodified natural pumice within a batch process to effectuate the removal of Cs-137 radionuclides from real liquid radioactive wastes (RLRWs). The discernment of optimal adsorption parameters encompassed a pH level of 5, a pumice dosage of 3.33 g/L, a mixing duration of 5 min, a mixing speed of 100 revolutions per minute, all maintained at room temperature. The attainment of a peak removal efficiency of 91.75% for Cs-137 substantiates the efficacy of the chosen conditions. Moreover, the determination of regression coefficients (R2) arising from the application of Freundlich and Langmuir isotherm analyses yielded values of 0.91 and 0.96, respectively, thus validating the appropriateness of both models in depicting the adsorption mechanism. Evidently, the pseudo-second-order kinetic model exhibited a high correlation coefficient of 0.99, attesting to its aptitude in characterizing the adsorption dynamics. A thermodynamic appraisal of the process indicated an endothermic nature, offering insights into the fundamental energetics governing the interaction. Consequently, the adsorption phenomenon unfolded predominantly on monolayer, heterogeneous surfaces, with chemical interactions taking precedence on the active pumice sites.
Collapse
Affiliation(s)
- Mezher Abed Gatea
- Ministry of Science and Technology, Baghdad, Iraq; Civil Engineering Department, University of Technology-Iraq, Alsinaa Street 52, 10066, Baghdad, Iraq
| | - Ghufran Farooq Jumaah
- Civil Engineering Department, University of Technology-Iraq, Alsinaa Street 52, 10066, Baghdad, Iraq
| | - Riyad Hassan Al Anbari
- Civil Engineering Department, University of Technology-Iraq, Alsinaa Street 52, 10066, Baghdad, Iraq
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, 10066, Baghdad, Iraq.
| |
Collapse
|
6
|
Alardhi SM, Salih HG, Ali NS, Khalbas AH, Salih IK, Saady NMC, Zendehboudi S, Albayati TM, Harharah HN. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci Rep 2023; 13:21063. [PMID: 38030694 PMCID: PMC10687264 DOI: 10.1038/s41598-023-47319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.
Collapse
Affiliation(s)
- Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Hussein G Salih
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Ali H Khalbas
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq.
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Abewaa M, Mengistu A, Takele T, Fito J, Nkambule T. Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Sci Rep 2023; 13:14701. [PMID: 37679475 PMCID: PMC10485061 DOI: 10.1038/s41598-023-41957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
The potential for malachite green dye saturated effluent to severely affect the environment and human health has prompted the search for effective treatment technologies. Thus, this study was conducted with the goal of developing activated carbon from Rumex abyssinicus for the adsorptive removal of malachite green dye from an aqueous solution. Unit operations such as drying, size reduction, impregnation with H3PO4, and thermal activation were used during the preparation of the activated carbon. An experiment was designed considering four main variables at their respective three levels: initial dye concentration (50, 100, and 150 mg/L), pH (3, 6, and 9), contact period (20, 40, and 60 min), and adsorbent dosage (0.05, 0.01, and 0.15 g/100 mL). Optimization of the batch adsorption process was carried out using the Response Surface methodology's Box Behnken approach. The characterization of the activated carbon was described by SEM for surface morphology with cracks and highly porous morphology, FTIR for multi-functional groups O-H at 3506.74 cm-1 and 3290.70 cm-1, carbonyl group stretching from aldehyde and ketone (1900-1700 cm-1), stretching motion of aromatic ring C=C (1543.12 cm-1), stretching motion of -C-H (1500-1200 cm-1), vibrational and stretching motion of -OH (1250.79 cm-1), and vibrational motion of C-O-C (1049.32 cm-1), pHpzc of 5.1, BET for the specific surface area of 962.3 m2/g, and XRD for the presence of amorphous structure. The maximum and minimum dye removal efficiencies of 99.9% and 62.4% were observed at their respective experimental conditions of (100 mg/L, 0.10 mg/100 mL, pH 6, and 40 min) and (100 mg/L, 0.15 mg/100 mL, pH 3, and 20 min), respectively. Langmuir, Freundlich, Toth, and Koble-Corrigan models were used to evaluate the experimental data, in which Koble-Corrigan model was found to be the best fit with the highest value of R2 0.998. In addition to this, the kinetic studies were undertaken using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Boyd models, and as a result, the pseudo-second-order model proved to have a better fit among the kinetic models. The kinetics and isotherm analysis revealed that the nature of the adsorption to be homogenous and monolayer surfaces driven by chemosorption. Furthermore, the thermodynamics study revealed the nature of adsorption to be feasible, spontaneous, and endothermic. On the other hand, the reusability study depicted the fact that the adsorbent can be utilized for five cycles with a negligible drop in the removal efficiencies from 99.9 to 95.2%. Finally, the low-cost, environmentally benign, and high adsorption capacity of the adsorbent material derived from Rumex abyssinicus stem could be used to treat industrial effluents.
Collapse
Affiliation(s)
- Mikiyas Abewaa
- Department of Chemical Engineering, College of Engineering and Technology, Wachemo University, P. O. Box 667, Hossana, Ethiopia.
| | - Ashagrie Mengistu
- The Federal Democratic Republic of Ethiopia, Manufacturing Industry Development Institute, P. O. Box 1180, Addis Ababa, Ethiopia
| | - Temesgen Takele
- Department of Chemical Engineering, College of Engineering and Technology, Wachemo University, P. O. Box 667, Hossana, Ethiopia
| | - Jemal Fito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
8
|
Ali NS, Harharah HN, Salih IK, Cata Saady NM, Zendehboudi S, Albayati TM. Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater. Sci Rep 2023; 13:9837. [PMID: 37330584 DOI: 10.1038/s41598-023-37090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023] Open
Abstract
In this work, the MCM-48 mesoporous material was prepared and characterized to apply it as an active adsorbent for the adsorption of 4-nitroaniline (4-Nitrobenzenamine) from wastewater. The MCM-48 characterizations were specified by implementing various techniques such as; scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, pore size distribution (PSD), and Fourier transform infrared (FTIR). The batch adsorption results showed that the MCM-48 was very active for the 4-nitroaniline adsorption from wastewater. The adsorption equilibrium results were analyzed by applying isotherms like Langmuir, Freundlich, and Temkin. The maximum experimental uptake according to type I Langmuir adsorption was found to be 90 mg g-1 approximately. The Langmuir model with determination coefficient R2 = 0.9965 is superior than the Freundlich model R2 = 0.99628 and Temkin model R2 = 0.9834. The kinetic adsorption was investigated according to pseudo 1st order, pseudo 2nd order, and Intraparticle diffusion model. The kinetic results demonstrated that the regression coefficients are so high R2 = 0.9949, that mean the pseudo 2nd order hypothesis for the adsorption mechanism process appears to be well-supported. The findings of adsorption isotherms and kinetics studies indicate the adsorption mechanism is a chemisorption and physical adsorption process.
Collapse
Affiliation(s)
- Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411, Abha, Kingdom of Saudi Arabia
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., P.O. Box 35010, Baghdad, Iraq.
| |
Collapse
|
9
|
Al-Khodor YAA, Albayati TM. Real heavy crude oil desulfurization onto nanoporous activated carbon implementing batch adsorption process: equilibrium, kinetics, and thermodynamic studies. CHEMISTRY AFRICA 2023; 6:747-756. [DOI: 10.1007/s42250-022-00482-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 09/02/2023]
|
10
|
Dianellou I, Karantoumanis F, Tsamos P, Noli F. The effect of irradiation on the Cs, Co and Eu-removal from aqueous solutions using Greek minerals. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractSorption properties of Greek bentonites and zeolites were investigated in raw form and after irradiation for removal of Cs, Co and Eu from aqueous solutions using 137Cs, 60Co and 152Eu as tracers and γ-spectroscopy. The sorption experiments were undertaken under different conditions (pH, concentration, competitive ions and temperature). The structural changes of the sorbents due to irradiation and metal sorption were examined through XRD, FTIR and SEM/EDS. Sorption isotherms were reproduced by mathematical models and thermodynamic parameters were derived. The results showed that the sorption capacity was slightly affected by irradiation. The environmental compatibility tests proved the safe disposal of the investigated materials.
Collapse
|