1
|
Photiou C, Cloconi C, Strouthos I. Feature-Based vs. Deep-Learning Fusion Methods for the In Vivo Detection of Radiation Dermatitis Using Optical Coherence Tomography, a Feasibility Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01241-4. [PMID: 39231883 DOI: 10.1007/s10278-024-01241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Acute radiation dermatitis (ARD) is a common and distressing issue for cancer patients undergoing radiation therapy, leading to significant morbidity. Despite available treatments, ARD remains a distressing issue, necessitating further research to improve prevention and management strategies. Moreover, the lack of biomarkers for early quantitative assessment of ARD impedes progress in this area. This study aims to investigate the detection of ARD using intensity-based and novel features of Optical Coherence Tomography (OCT) images, combined with machine learning. Imaging sessions were conducted twice weekly on twenty-two patients at six neck locations throughout their radiation treatment, with ARD severity graded by an expert oncologist. We compared a traditional feature-based machine learning technique with a deep learning late-fusion approach to classify normal skin vs. ARD using a dataset of 1487 images. The dataset analysis demonstrates that the deep learning approach outperformed traditional machine learning, achieving an accuracy of 88%. These findings offer a promising foundation for future research aimed at developing a quantitative assessment tool to enhance the management of ARD.
Collapse
Affiliation(s)
- Christos Photiou
- Department of Electrical and Computer Engineering, KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus.
| | | | | |
Collapse
|
2
|
Aleksandrova PV, Zaytsev KI, Nikitin PV, Alekseeva AI, Zaitsev VY, Dolganov KB, Reshetov IV, Karalkin PA, Kurlov VN, Tuchin VV, Dolganova IN. Quantification of attenuation and speckle features from endoscopic OCT images for the diagnosis of human brain glioma. Sci Rep 2024; 14:10722. [PMID: 38729956 PMCID: PMC11087587 DOI: 10.1038/s41598-024-61292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Application of optical coherence tomography (OCT) in neurosurgery mostly includes the discrimination between intact and malignant tissues aimed at the detection of brain tumor margins. For particular tissue types, the existing approaches demonstrate low performance, which stimulates the further research for their improvement. The analysis of speckle patterns of brain OCT images is proposed to be taken into account for the discrimination between human brain glioma tissue and intact cortex and white matter. The speckle properties provide additional information of tissue structure, which could help to increase the efficiency of tissue differentiation. The wavelet analysis of OCT speckle patterns was applied to extract the power of local brightness fluctuations in speckle and its standard deviation. The speckle properties are analysed together with attenuation ones using a set of ex vivo brain tissue samples, including glioma of different grades. Various combinations of these features are considered to perform linear discriminant analysis for tissue differentiation. The results reveal that it is reasonable to include the local brightness fluctuations at first two wavelet decomposition levels in the analysis of OCT brain images aimed at neurosurgical diagnosis.
Collapse
Affiliation(s)
- P V Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991.
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - P V Nikitin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- N.N. Burdenko National Medical Research Center for Neurosurgery, Moscow, Russia, 125047
| | - A I Alekseeva
- Avtsyn Research Institute of Human Morphology, FSBSI "Petrovsky National Research Centre of Surgery", Moscow, Russia, 117418
| | - V Y Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia, 603950
| | - K B Dolganov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - I V Reshetov
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - P A Karalkin
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - V N Kurlov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia, 142432
| | - V V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia, 410000
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia, 410028
- Tomsk State University, Tomsk, Russia, 634050
| | - I N Dolganova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia, 142432.
| |
Collapse
|
3
|
Khaledi N, Khan R, Gräfe JL. Historical Progress of Stereotactic Radiation Surgery. J Med Phys 2023; 48:312-327. [PMID: 38223793 PMCID: PMC10783188 DOI: 10.4103/jmp.jmp_62_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024] Open
Abstract
Radiosurgery and stereotactic radiotherapy have established themselves as precise and accurate areas of radiation oncology for the treatment of brain and extracranial lesions. Along with the evolution of other methods of radiotherapy, this type of treatment has been associated with significant advances in terms of a variety of modalities and techniques to improve the accuracy and efficacy of treatment. This paper provides a comprehensive overview of the progress in stereotactic radiosurgery (SRS) over several decades, and includes a review of various articles and research papers, commencing with the emergence of stereotactic techniques in radiotherapy. Key clinical aspects of SRS, such as fixation methods, radiobiology considerations, quality assurance practices, and treatment planning strategies, are presented. In addition, the review highlights the technological advancements in treatment modalities, encompassing the transition from cobalt-based systems to linear accelerator-based modalities. By addressing these topics, this study aims to offer insights into the advancements that have shaped the field of SRS, that have ultimately enhanced the accuracy and effectiveness of treatment.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of Medical Physics, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Rao Khan
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Physics and Astronomy and Department of Radiation Oncology, Howard University, Washington, District of Columbia, USA
| | - James L. Gräfe
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Cancer Care Program, Dr. H. Bliss Murphy Cancer Center. 300 Prince Philip Drive St. John’s, NL, Canada
| |
Collapse
|
4
|
Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid TE, Bergmayr A, Etzelstorfer T, Geinitz H. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One 2023; 18:e0281662. [PMID: 36862637 PMCID: PMC9980765 DOI: 10.1371/journal.pone.0281662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory skin reactions and skin alterations are still a potential side effect in radiation therapy (RT), which also need attention for patients' health care. METHOD In a pre-clinical study we consider alterations in irradiated in-vitro skin models of epidermal and dermal layers. Typical dose regimes in radiation therapy are applied for irradiation. For non-invasive imaging and characterization optical coherence tomography (OCT) is used. Histological staining method is additionally applied for comparison and discussion. RESULTS Structural features, such as keratinization, modifications in epidermal cell layer thickness and disorder in the layering-as indications for reactions to ionizing radiation and aging-could be observed by means of OCT and confirmed by histology. We were able to recognize known RT induced changes such as hyper-keratosis, acantholysis, and epidermal hyperplasia as well as disruption and/or demarcation of the dermo-epidermal junction. CONCLUSION The results may pave the way for OCT to be considered as a possible adjunctive tool to detect and monitor early skin inflammation and side effects of radiotherapy, thus supporting patient healthcare in the future.
Collapse
Affiliation(s)
- Luisa Bromberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Bettina Heise
- Institute for Mathematical Methods in Medicine and Data Based Modelling, Johannes Kepler University (JKU), Linz, Austria
- Research Center for Non-Destructive Testing (RECENDT)-GmbH, Linz, Austria
- * E-mail:
| | | | | | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Thomas Ernst Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Alexandra Bergmayr
- Department of Pathology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Tanja Etzelstorfer
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| |
Collapse
|
5
|
Wu D, Xu N, Xie Y, Shen Y, Fu Y, Liu L, Chi Z, Lu R, Xiang R, Wen Y, Yang J, Jiang H. Noninvasive optoacoustic imaging of breast tumor microvasculature in response to radiotherapy. Front Physiol 2022; 13:1044308. [PMID: 36324309 PMCID: PMC9618817 DOI: 10.3389/fphys.2022.1044308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Detailed insight into the radiation-induced changes in tumor microvasculature is crucial to maximize the efficacy of radiotherapy against breast cancer. Recent advances in imaging have enabled precise targeting of solid lesions. However, intratumoral heterogeneity makes treatment planning and monitoring more challenging. Conventional imaging cannot provide high-resolution observation and longitudinal monitoring of large-scale microvascular in response to radiotherapy directly in deep tissues. Herein, we report on an emerging non-invasive imaging assessment method of morphological and functional tumor microvasculature responses with high spatio-temporal resolution by means of optoacoustic imaging (OAI). In vivo imaging of 4T1 breast tumor response to a conventional fractionated radiotherapy at varying dose (14 × 2 Gy and 3 × 8 Gy) has been performed after 2 weeks following treatment. Remarkably, optoacoustic images can generate richful contrast for the tumor microvascular architecture. Besides, the functional status of tumor microvasculature and tumor oxygenation levels were further estimated using OAI. The results revealed the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses. The vessels exhibited an decrease in their density accompanied by a decline in the number of vascular segments following irradiation, compared to the control group. The measurements further revealed an increase of tumor oxygenation levels for 14 × 2 Gy and 3 × 8 Gy irradiations. Our results suggest that OAI could be used to assess the response to radiotherapy based on changes in the functional and morphological status of tumor microvasculature, which are closely linked to the intratumor microenvironment. OAI assessment of the tumor microenvironment such as oxygenation status has the potential to be applied to precise radiotherapy strategy.
Collapse
Affiliation(s)
- Dan Wu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Nan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yonghua Xie
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yang Shen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yunlu Fu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Liang Liu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zihui Chi
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Runyu Lu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Renjie Xiang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yanting Wen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Ultrasonic Department, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| |
Collapse
|