1
|
Montgomery KL, Novoa RA, Ko JM, Sanchez GN. Handheld multiphoton and pinhole-free reflectance confocal microscopy enables noninvasive, real-time cross-sectional imaging in skin. Sci Rep 2024; 14:26129. [PMID: 39478114 PMCID: PMC11526003 DOI: 10.1038/s41598-024-76908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Biopsy-based histology has been the foundation of disease diagnosis and management for over a century. A long-sought goal in dermatology is the development of an imaging modality with sufficient resolution and compositional detail to noninvasively interrogate skin histology in vivo. Here, we describe a system that achieves this goal using cross-sectionally scanned, multimodal microscopy (cross-modal). Cross-modal combines multiphoton and reflectance confocal microscopy into one compact system with coordinated three-axis scanning that preserves optical resolution in cross-section. A custom pinhole-free mechanism employing finite-infinite conjugates further simplifies and stabilizes confocal alignment. Evaluated in participants ages 9-81 and Fitzpatrick skin types (FST) 1-5, cross-modal images revealed histological details analogous to those obtained from traditional biopsied tissue. We observed dermal elastosis in sun-damaged skin, elevated melanin in pigmented skin, basaloid nests in basal cell carcinoma, and elongated rete ridges in seborrheic keratosis, supporting cross-modal's potential to deliver histological insights noninvasively.
Collapse
Affiliation(s)
| | - Roberto A Novoa
- Department of Dermatology, Stanford School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
2
|
Assi A, Fischman S, Lopez C, Pedrazzani M, Grignon G, Missodey R, Korichi R, Cauchard JH, Ralambondrainy S, Bonnier F. Evaluating facial dermis aging in healthy Caucasian females with LC-OCT and deep learning. Sci Rep 2024; 14:24113. [PMID: 39406771 PMCID: PMC11480100 DOI: 10.1038/s41598-024-74370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Recent advancements in high-resolution imaging have significantly improved our understanding of microstructural changes in the skin and their relationship to the aging process. Line Field Confocal Optical Coherence Tomography (LC-OCT) provides detailed 3D insights into various skin layers, including the papillary dermis and its fibrous network. In this study, a deep learning model utilizing a 3D ResNet-18 network was trained to predict chronological age from LC-OCT images of 100 healthy Caucasian female volunteers, aged 20 to 70 years. The AI-based protocol focused on regions of interest delineated between the segmented dermal-epidermal junction and the superficial dermis, exploiting complex patterns within the collagen network for age prediction. The model achieved a mean absolute error of 4.2 years and exhibited a Pearson correlation coefficient of 0.937 with actual ages. Furthermore, there was a notable correlation (r = 0.87) between quantified clinical scoring, encompassing parameters such as firmness, elasticity, density, and wrinkle appearance, and the ages predicted by deep learning model. This strong correlation underscores how integrating emerging imaging technologies with deep learning can accelerate aging research and deepen our understanding of how alterations in skin microstructure are related to visible signs of aging.
Collapse
Affiliation(s)
- Ali Assi
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | | | | | | | - Guénolé Grignon
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Raoul Missodey
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Rodolphe Korichi
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | | | | | - Franck Bonnier
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France.
| |
Collapse
|
3
|
Padrez Y, Golubewa L, Timoshchenko I, Enache A, Eftimie LG, Hristu R, Rutkauskas D. Machine learning-based diagnostics of capsular invasion in thyroid nodules with wide-field second harmonic generation microscopy. Comput Med Imaging Graph 2024; 117:102440. [PMID: 39383763 DOI: 10.1016/j.compmedimag.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common, well-differentiated carcinomas of the thyroid gland. PTC nodules are often surrounded by a collagen capsule that prevents the spread of cancer cells. However, as the malignant tumor progresses, the integrity of this protective barrier is compromised, and cancer cells invade the surroundings. The detection of capsular invasion is, therefore, crucial for the diagnosis and the choice of treatment and the development of new approaches aimed at the increase of diagnostic performance are of great importance. In the present study, we exploited the wide-field second harmonic generation (SHG) microscopy in combination with texture analysis and unsupervised machine learning (ML) to explore the possibility of quantitative characterization of collagen structure in the capsule and designation of different capsule areas as either intact, disrupted by invasion, or apt to invasion. Two-step k-means clustering showed that the collagen capsules in all analyzed tissue sections were highly heterogeneous and exhibited distinct segments described by characteristic ML parameter sets. The latter allowed a structural interpretation of the collagen fibers at the sites of overt invasion as fragmented and curled fibers with rarely formed distributed networks. Clustering analysis also distinguished areas in the PTC capsule that were not categorized as invasion sites by the initial histopathological analysis but could be recognized as prospective micro-invasions after additional inspection. The characteristic features of suspicious and invasive sites identified by the proposed unsupervised ML approach can become a reliable complement to existing methods for diagnosing encapsulated PTC, increase the reliability of diagnosis, simplify decision making, and prevent human-related diagnostic errors. In addition, the proposed automated ML-based selection of collagen capsule images and exclusion of non-informative regions can greatly accelerate and simplify the development of reliable methods for fully automated ML diagnosis that can be integrated into clinical practice.
Collapse
Affiliation(s)
- Yaraslau Padrez
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania.
| | - Lena Golubewa
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Igor Timoshchenko
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Adrian Enache
- Central University Emergency Military Hospital, Pathology Department, 134 Calea Plevnei, Bucharest 010825, Romania
| | - Lucian G Eftimie
- Central University Emergency Military Hospital, Pathology Department, 134 Calea Plevnei, Bucharest 010825, Romania; Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
| | - Danielis Rutkauskas
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
4
|
Kondo S, Ozawa N, Sakurai T. The effect of degeneration of elastic fibres on loss of elasticity and wrinkle formation. Int J Cosmet Sci 2024. [PMID: 39258399 DOI: 10.1111/ics.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE Skin elasticity, which is vital for a youthful appearance, depends on the elastic fibres in the dermis. However, these fibres deteriorate with ageing, resulting in wrinkles and sagging. Changes that occur in the elastic fibres in living human skin and the relationship between elastic fibres and the state of the skin surface remain unclear. Therefore, it is necessary to verify the relationship between elastic fibres and skin elasticity. In this study, we investigated the association of the elastic fibre structure with skin elasticity and stratum corneum protein content in living human skin. METHODS Thirty-five female volunteers aged 25-66 years were included in this study. Elastic fibres were observed using a multiphoton scanning laser biomicroscope. Skin elasticity was measured using a Cutometer, and stratum corneum proteins (Heat-shock protein 27 [HSP27] and galectin-7 [Gal-7]) in tape-stripped samples were analysed using an enzyme-linked immunosorbent assay. RESULTS Elastic fibres exhibited increased curvature and thickness with increased age, with fragmentation observed in women aged >60 years. Elastin scores, which reflect thinness and curvature, were negatively correlated with age, whereas they were positively correlated with R7 elasticity (recovery ability). In individuals aged 20-30 years, higher levels of inflammatory markers (HSP27 and Gal-7) correlated with lower elastin scores; however, this trend was not observed in older participants. CONCLUSION Elastic fibre deterioration worsened after 40 years of age, and this effect correlated with reduced skin recovery and increased wrinkles. In younger individuals, inflammatory markers affected elastic fibres. These findings can guide anti-ageing strategies that focus on elastic fibre preservation and inflammation control.
Collapse
Affiliation(s)
- Shinya Kondo
- FANCL Research Institute, FANCL Corporation, Yokohama, Kanagawa, Japan
| | - Naoko Ozawa
- FANCL Research Institute, FANCL Corporation, Yokohama, Kanagawa, Japan
| | - Tetsuhito Sakurai
- FANCL Research Institute, FANCL Corporation, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Ali A, Colombe L, Mélanie P, Agnes P, Meryem N, Samuel R, Guénolé G, Jean‐Hubert C, Rodolphe K, Franck B. Comparison of facial skin ageing in healthy Asian and Caucasian females quantified by in vivo line-field confocal optical coherence tomography 3D imaging. Skin Res Technol 2024; 30:e13643. [PMID: 39221700 PMCID: PMC11367555 DOI: 10.1111/srt.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Quantitative biomarkers of facial skin aging were investigated in 109 healthy Asian female volunteers, aged 20 to 70 years. MATERIALS AND METHODS In vivo 3D Line-field Confocal Optical Coherence Tomography (LC-OCT) imaging, enhanced by Artificial Intelligence (AI)-based quantification algorithms, was utilized to compute various metrics, including stratum corneum thickness (SC), viable epidermal (VE) thickness, and Dermal-Epidermal Junction (DEJ) undulation along with cellular metrics for the temple, cheekbone, and mandible. RESULTS Comparison with data from a cohort of healthy Caucasian volunteers revealed similarities in the variations of stratum corneum and viable epidermis layers, as well as cellular shape and size with age in both ethnic groups. However, specific findings emerged, such as larger, more heterogeneous nuclei in both layers, demonstrated by an increase in nuclei volume and their standard deviation, and increased network atypia, all showing significant age-related variations. Caucasian females exhibited a flatter and more homogeneous epidermis, evidenced by a decreased standard deviation of the number of layers, and a less dense cellular network with fewer cells per layer, indicated by a decrease in cell surface density. CONCLUSION Ethnicity-wise comparisons highlighted distinct biological features specific to each population. Asian individuals showed significantly higher DEJ undulation, higher compactness, and lower cell network atypia compared to their Caucasian counterparts across age groups. Differences in stratum corneum and viable epidermal thickness on the cheekbone were also significant. LC-OCT 3D imaging provides valuable insights into the aging process in different populations and underscores inherent biological differences between Caucasian and Asian female volunteers.
Collapse
Affiliation(s)
- Assi Ali
- LVMH Recherche, Saint Jean de BrayeParisFrance
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Florea MA, Eftimie LG, Glogojeanu RR, Hristu R, Stanciu GA, Costache M. Imaging of colorectal adenomas with pseudoinvasion and malignant polyps using two-photon excitation microscopy. Front Oncol 2024; 14:1394493. [PMID: 38947893 PMCID: PMC11211392 DOI: 10.3389/fonc.2024.1394493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eosin staining examination. For challenging cases like adenomatous polyps with epithelial misplacement, additional diagnostic methods could prove beneficial. Methods This paper aims to underscore stromal changes observed in malignant polyps and polyps with pseudoinvasion, leveraging two-photon excitation microscopy (TPEM), a technique extensively employed in the medical field in recent years. Results and discussions Both the subjective and quantitative analysis of TPEM images revealed distinct distributions and densities of collagen at the invasion front in malignant polyps compared to areas of pseudoinvasion. TPEM holds potential in discerning true invasion in malignant polyps from pseudoinvasion, offering enhanced visualization of local stromal changes.
Collapse
Affiliation(s)
- Maria-Alexandra Florea
- Pathology Department, Central University Emergency Military Hospital, Bucharest, Romania
- Pathology Department, University of Medicine and Pharmacy, Carol Davila’, Bucharest, Romania
| | - Lucian George Eftimie
- Pathology Department, Central University Emergency Military Hospital, Bucharest, Romania
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
- Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Remus Relu Glogojeanu
- Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Mariana Costache
- Pathology Department, University of Medicine and Pharmacy, Carol Davila’, Bucharest, Romania
| |
Collapse
|
7
|
Georgievskaya A, Tlyachev T, Kiselev K, Hillebrand G, Chekanov K, Danko D, Golodyaev A, Majmudar G. Predicting human chronological age via AI analysis of dorsal hand versus facial images: A study in a cohort of Indian females. Exp Dermatol 2024; 33:e15045. [PMID: 38509744 DOI: 10.1111/exd.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
Predicting a person's chronological age (CA) from visible skin features using artificial intelligence (AI) is now commonplace. Often, convolutional neural network (CNN) models are built using images of the face as biometric data. However, hands hold telltale signs of a person's age. To determine the utility of using only hand images in predicting CA, we developed two deep CNNs based on 1) dorsal hand images (H) and 2) frontal face images (F). Subjects (n = 1454) were Indian women, 20-80 years, across three geographic cohorts (Mumbai, New Delhi and Bangalore) and having a broad variation in skin tones. Images were randomised: 70% of F and 70% of H were used to train CNNs. The remaining 30% of F and H were retained for validation. CNN validation showed mean absolute error for predicting CA using F and H of 4.1 and 4.7 years, respectively. In both cases correlations of predicted and actual age were statistically significant (r(F) = 0.93, r(H) = 0.90). The CNNs for F and H were validated for dark and light skin tones. Finally, by blurring or accentuating visible features on specific regions of the hand and face, we identified those features that contributed to the CNN models. For the face, areas of the inner eye corner and around the mouth were most important for age prediction. For the hands, knuckle texture was a key driver for age prediction. Collectively, for AI estimates of CA, CNNs based solely on hand images are a viable alternative and comparable to CNNs based on facial images.
Collapse
Affiliation(s)
| | | | | | - Greg Hillebrand
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | - Gopa Majmudar
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Ferrara F, Pecorelli A, Pambianchi E, White S, Choudhary H, Casoni A, Valacchi G. Vitamin C compounds mixture prevents skin barrier alterations and inflammatory responses upon real life multi pollutant exposure. Exp Dermatol 2024; 33:e15000. [PMID: 38284201 DOI: 10.1111/exd.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | | | | | - Alice Casoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Mizukoshi K, Iwazaki H, Ida T. Quantitative analysis of age-related changes in vascular structure, oxygen saturation, and epidermal melanin structure using photoacoustic methods. Skin Res Technol 2024; 30:e13537. [PMID: 38174730 PMCID: PMC10765365 DOI: 10.1111/srt.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Vascular structure, blood oxygen saturation, and melanin status of the epidermis are chromophore factors related to light absorption. Therefore, they are likely to be related to skin appearance. Thus, it is important to measure these internal skin features and understand their characteristics. Thus, we aimed to analyze the individual differences and aging changes in the skin by measuring the internal skin characteristics, such as vascular structure, oxygen saturation, and the 3D distribution of melanin in the epidermis, using a noninvasive photoacoustic (PA) measurement method. MATERIALS AND METHODS A PA measurement device was used as a noninvasive measurement method. Eighty Japanese women aged between 20 and 60 years were enrolled. The target area was the buccal region of the face. RESULTS The blood vessel structure showed a decrease in fine vessels with age, with a stronger tendency observed in the dermis layer, and the volume of blood vessels was larger in the dermis layer than in the dermal-subcutaneous fat boundary layer. Oxygen saturation showed a similar decreasing trend with age in all depths examined. Melanin condition as the torus-like pattern structure tended to increase with age. CONCLUSION PA measurements revealed the characteristics of several chromophores, providing a new skin aging mechanism.
Collapse
|
10
|
Chen KJ, Han Y, Wang ZY, Cui Y. Submicron resolution techniques: Multiphoton microscopy in skin disease. Exp Dermatol 2023; 32:1613-1623. [PMID: 37522747 DOI: 10.1111/exd.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Non-invasive optical examination plays a crucial role in various aspects of dermatology, such as diagnosis, management and research. Multiphoton microscopy uses a unique submicron technology to stimulate autofluorescence (AF), allowing for the observation of cellular structure, assessment of redox status and quantification of collagen fibres. This advanced imaging technique offers dermatologists novel insights into the skin's structure, positioning it as a promising 'stethoscope' for future development in the field. This review provides an overview of multiphoton microscopy's principles, technology and application in studying normal skin, tumour and inflammatory diseases, as well as collagen-related and pigmentary diseases.
Collapse
Affiliation(s)
- Ke-Jun Chen
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Han
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Yi Wang
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Colboc H, Moguelet P, Bazin D, Letavernier E, Sun C, Chessel A, Carvalho P, Lok C, Dillies AS, Chaby G, Maillard H, Kottler D, Goujon E, Jurus C, Panaye M, Tang E, Courville P, Boury A, Monfort JB, Chasset F, Senet P, Schanne-Klein MC. Elastic fiber alterations and calcifications in calcific uremic arteriolopathy. Sci Rep 2023; 13:15519. [PMID: 37726292 PMCID: PMC10509184 DOI: 10.1038/s41598-023-42492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Calcific uremic arteriolopathy (CUA) is a severely morbid disease, affecting mostly dialyzed end-stage renal disease (ESRD) patients, associated with calcium deposits in the skin. Calcifications have been identified in ESRD patients without CUA, indicating that their presence is not specific to the disease. The objective of this retrospective multicenter study was to compare elastic fiber structure and skin calcifications in ESRD patients with CUA to those without CUA using innovative structural techniques. Fourteen ESRD patients with CUA were compared to 12 ESRD patients without CUA. Analyses of elastic fiber structure and skin calcifications using multiphoton microscopy followed by machine-learning analysis and field-emission scanning electron microscopy coupled with energy dispersive X-ray were performed. Elastic fibers specifically appeared fragmented in CUA. Quantitative analyses of multiphoton images showed that they were significantly straighter in ESRD patients with CUA than without CUA. Interstitial and vascular calcifications were observed in both groups of ESRD patients, but vascular calcifications specifically appeared massive and circumferential in CUA. Unlike interstitial calcifications, massive circumferential vascular calcifications and elastic fibers straightening appeared specific to CUA. The origins of such specific elastic fiber's alteration are still to be explored and may involve relationships with ischemic vascular or inflammatory processes.
Collapse
Affiliation(s)
- Hester Colboc
- Sorbonne Université, Hôpital Rothschild, Service Plaies et Cicatrisation, UMRS_1155, 5, Rue Santerre, 75012, Paris, France.
| | - Philippe Moguelet
- Sorbonne Université, Hôpital Tenon, Anatomie et Cytologie Pathologiques, Paris, France
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, UMRS_1155, Paris, France
| | - Chenyu Sun
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Anatole Chessel
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Priscille Carvalho
- Centre Hospitalier Universitaire de Rouen, Service de Dermatologie, Rouen, France
| | - Catherine Lok
- Centre Hospitalier Universitaire d'Amiens, Service de Dermatologie, Amiens, France
| | | | - Guillaume Chaby
- Centre Hospitalier Universitaire d'Amiens, Service de Dermatologie, Amiens, France
| | - Hervé Maillard
- Centre Hospitalier du Mans, Service de Dermatologie, Le Mans, France
| | - Diane Kottler
- Centre Hospitalier Universitaire de Caen, Service de Dermatologie, Caen, France
| | - Elisa Goujon
- Centre Hospitalier de Chalon-sur-Saône, Service de Dermatologie, Chalon, France
| | - Christine Jurus
- Clinique du Tonkin, Service de Médecine Vasculaire, Villeurbanne, France
| | - Marine Panaye
- Clinique du Tonkin, Service de Médecine Vasculaire, Villeurbanne, France
| | - Ellie Tang
- Sorbonne Université, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, UMRS_1155, Paris, France
| | - Philippe Courville
- Centre Hospitalier Universitaire de Rouen, Anatomie et Cytologie Pathologiques, Rouen, France
| | - Antoine Boury
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Jean-Benoit Monfort
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie 3t Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Patricia Senet
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
12
|
Bonnier F, Pedrazzani M, Fischman S, Viel T, Lavoix A, Pegoud D, Nili M, Jimenez Y, Ralambondrainy S, Cauchard JH, Korichi R. Line-field confocal optical coherence tomography coupled with artificial intelligence algorithms to identify quantitative biomarkers of facial skin ageing. Sci Rep 2023; 13:13881. [PMID: 37620374 PMCID: PMC10449778 DOI: 10.1038/s41598-023-40340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative biomarkers of facial skin ageing were studied from one hundred healthy Caucasian female volunteers, aged 20-70 years, using in vivo 3D Line-field Confocal Optical Coherence Tomography (LC-OCT) imaging coupled with Artificial Intelligence (AI)-based quantification algorithms. Layer metrics, i.e. stratum corneum thickness (SC), viable epidermal thickness and Dermal-Epidermal Junction (DEJ) undulation, as well as cellular metrics were measured for the temple, cheekbone and mandible. For all three investigated facial areas, minimal age-related variations were observed in the thickness of the SC and viable epidermis layers. A flatter and more homogeneous epidermis (decrease in the standard deviation of the number of layers means), a less dense cellular network with fewer cells per layer (decrease in cell surface density), and larger and more heterogeneous nuclei within each layer (increase in nuclei volume and their standard deviation) were found with significant variations with age. The higher atypia scores further reflected the heterogeneity of nuclei throughout the viable epidermis. The 3D visualisation of fine structures in the skin at the micrometric resolution and the 1200 µm × 500 µm field of view achieved with LC-OCT imaging enabled to compute relevant quantitative biomarkers for a better understanding of skin biology and the ageing process in vivo.
Collapse
Affiliation(s)
- Franck Bonnier
- LVMH Recherche, 185 Avenue de Verdun, 45804, Saint Jean de Braye, France.
| | | | | | - Théo Viel
- DAMAE Medical, 14 Rue Sthrau, 75013, Paris, France
| | - Agnes Lavoix
- DERMATECH, 8 Rue Jacqueline Auriol, 69008, Lyon, France
| | - Didier Pegoud
- DERMATECH, 8 Rue Jacqueline Auriol, 69008, Lyon, France
| | - Meryem Nili
- DERMATECH, 8 Rue Jacqueline Auriol, 69008, Lyon, France
| | | | | | | | - Rodolphe Korichi
- LVMH Recherche, 185 Avenue de Verdun, 45804, Saint Jean de Braye, France
| |
Collapse
|
13
|
Pena AM, Ito S, Bornschlögl T, Brizion S, Wakamatsu K, Del Bino S. Multiphoton FLIM Analyses of Native and UVA-Modified Synthetic Melanins. Int J Mol Sci 2023; 24:4517. [PMID: 36901948 PMCID: PMC10002570 DOI: 10.3390/ijms24054517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
To better understand the impact of solar light exposure on human skin, the chemical characterization of native melanins and their structural photo-modifications is of central interest. As the methods used today are invasive, we investigated the possibility of using multiphoton fluorescence lifetime (FLIM) imaging, along with phasor and bi-exponential fitting analyses, as a non-invasive alternative method for the chemical analysis of native and UVA-exposed melanins. We demonstrated that multiphoton FLIM allows the discrimination between native DHI, DHICA, Dopa eumelanins, pheomelanin, and mixed eu-/pheo-melanin polymers. We exposed melanin samples to high UVA doses to maximize their structural modifications. The UVA-induced oxidative, photo-degradation, and crosslinking changes were evidenced via an increase in fluorescence lifetimes along with a decrease in their relative contributions. Moreover, we introduced a new phasor parameter of a relative fraction of a UVA-modified species and provided evidence for its sensitivity in assessing the UVA effects. Globally, the fluorescence lifetime properties were modulated in a melanin-dependent and UVA dose-dependent manner, with the strongest modifications being observed for DHICA eumelanin and the weakest for pheomelanin. Multiphoton FLIM phasor and bi-exponential analyses hold promising perspectives for in vivo human skin mixed melanins characterization under UVA or other sunlight exposure conditions.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | | | | | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Sandra Del Bino
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| |
Collapse
|
14
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
15
|
Significant Reversal of Facial Wrinkle, Pigmented Spot and Roughness by Daily Application of Galactomyces Ferment Filtrate-Containing Skin Products for 12 Months-An 11-Year Longitudinal Skin Aging Rejuvenation Study. J Clin Med 2023; 12:jcm12031168. [PMID: 36769815 PMCID: PMC9917576 DOI: 10.3390/jcm12031168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Facial skin aging is an important psychophysical and social concern, especially in women. We compared facial parameters reflecting aging of the skin in 1999 and 2010 in 86 female volunteers. Then, all subjects applied three Galactomyces ferment filtrate-containing skin care products (G3 products; SK-II Facial Treatment Essence, SK-II Cellumination Essence, and SK-II Skin Signature Cream) twice daily for 12 months (M), with the skin parameters being measured at 2 M, 8 M, and 12 M during this period. Facial skin aging parameters such as wrinkles, hyperpigmented spots, and roughness significantly deteriorated during the 11-year interval. This 11-year aging process was associated with reduced hydration and increased transepidermal water loss (TEWL). Notably, treatment with G3 products significantly and cumulatively increased skin hydration with a correlated reduction of TEWL during the 12 M treatment period. Such treatment also significantly and cumulatively reversed the 11-year facial skin aging in the three parameters of wrinkles, spots, and roughness. These results suggest that facial skin retains the potential to recover from the aging process when it is applied with appropriate cosmetic agents.
Collapse
|
16
|
Li X, Qin S, Shi S, Feng Y, Li H, Feng Y, Li M, Wen J. Prospective study of efficacy and safety of non-ablative 1927 nm fractional thulium fiber laser in Asian skin photoaging. Front Surg 2023; 10:1076848. [PMID: 36950052 PMCID: PMC10025463 DOI: 10.3389/fsurg.2023.1076848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objective Photoaging manifests as deeper wrinkles and larger pores. It has been tried to rejuvenate photoaging skin using a variety of lasers, including fractionated lasers, which are a popular photorejuvenation treatment. A new breakthrough for skin rejuvenation is the 1927 nm fractional thulium fiber laser (FTL), a laser and light-based treatment option. Clinical data regarding the FTL for treating photoaging are limited despite its effectiveness and safety. This study is aim to evaluate FTL' clinical effectiveness and safety. Methods Fitzpatrick skin types II-IV subjects with mild to moderate photoaging signs were enrolled in this prospective study. At intervals of one month, patients received three full face treatments. Wrinkles, spots, texture, pores, melanin index, erythema index (MI and EI), skin elasticity and hydration were measured with non-invasive tool. The epidermal thickness and dermal density on ultrasonography were compared between baseline and one month after all treatment sessions. The Global Score for Photoaging scale (GSP) was rated by two independent evaluators at the baseline and final follow-up visit. Secondary outcomes included patient-rated pain on a 10-point visual analog scale (VAS), as well as overall satisfaction. Following each treatment, adverse events were noted. Results Totally 27 subjects (24 females and 3 males) with Fitzpatrick skin types II to IV and a mean age of 44.41 (range33-64) were enrolled. Results suggests that the epidermal thickness has significantly improved after treatment. Statistically significant improvements in melanin index, skin elasticity and wrinkles were noted. An analysis of 12 subjects' reports (44%) suggested their skin felt brighter. No post-inflammatory hyperpigmentation changes or adverse events were observed. 70% patients reporting "satisfied" or "extremely satisfied". Conclusions In this study, FTL was found to be a safe and effective treatment option for treating photoaging.
Collapse
Affiliation(s)
- Xianwen Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Qin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Siman Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yingjun Feng
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huarun Li
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuqin Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mujin Li
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ju Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Correspondence: Ju Wen
| |
Collapse
|