1
|
Laseca N, Molina A, Perdomo-González D, Ziadi C, Azor PJ, Valera M. Exploring the Genetic Landscape of Vitiligo in the Pura Raza Español Horse: A Genomic Perspective. Animals (Basel) 2024; 14:2420. [PMID: 39199954 PMCID: PMC11350783 DOI: 10.3390/ani14162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vitiligo is a depigmentation autoimmune disorder characterized by the progressive loss of melanocytes leading to the appearance of patchy depigmentation of the skin. The presence of vitiligo in horses is greater in those with grey coats. The aim of this study was therefore to perform a genome-wide association study (GWAS) to identify genomic regions and putative candidate loci associated with vitiligo depigmentation and susceptibility in the Pura Raza Español population. For this purpose, we performed a wssGBLUP (weighted single step genomic best linear unbiased prediction) using data from a total of 2359 animals genotyped with Affymetrix Axiom™ Equine 670 K and 1346 with Equine GeneSeek Genomic Profiler™ (GGP) Array V5. A total of 60,136 SNPs (single nucleotide polymorphisms) present on the 32 chromosomes from the consensus dataset after quality control were employed for the analysis. Vitiligo-like depigmentation was phenotyped by visual inspection of the different affected areas (eyes, mouth, nostrils) and was classified into nine categories with three degrees of severity (absent, slight, and severe). We identified one significant genomic region for vitiligo around the eyes, eight significant genomic regions for vitiligo around the mouth, and seven significant genomic regions for vitiligo around the nostrils, which explained the highest percentage of variance. These significant genomic regions contained candidate genes related to melanocytes, skin, immune system, tumour suppression, metastasis, and cutaneous carcinoma. These findings enable us to implement selective breeding strategies to decrease the incidence of vitiligo and to elucidate the genetic architecture underlying vitiligo in horses as well as the molecular mechanisms involved in the disease's development. However, further studies are needed to better understand this skin disorder in horses.
Collapse
Affiliation(s)
- Nora Laseca
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Davinia Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| | - Chiraz Ziadi
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Pedro J. Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| |
Collapse
|
2
|
Dutta T, Ganguly K, Saha A, Sil A, Ray K, Sengupta M. Identifying genetic defects in oculocutaneous albinism patients of West Bengal, Eastern India. Mol Biol Rep 2024; 51:818. [PMID: 39014059 DOI: 10.1007/s11033-024-09777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a congenital heterogeneous group of autosomal recessive disorders characterized by the absence or loss of melanin in the skin, eyes and hair of the affected individuals. Based on the mutated gene, OCA has been classified into eight sub-types (OCA1-8) with overlapping clinical phenotypes. Mutations in the TYR gene cause OCA1, the most prevalent OCA worldwide including India. Mutations in OCA2 and SLC45A2, both of which regulate melanosomal pH that is critical to TYR activity, cause OCA2 and OCA4 respectively, the other common OCA subtypes in India. METHODS In the present study, we have included 54 OCA-affected cases from 41 unrelated families representing 16 different marriage/ethnic groups from 17 districts of West Bengal, India. We pursued a PCR-sequencing based approach followed by bioinformatic analysis to identify mutations in TYR, OCA2 and SLC45A2 genes. RESULTS Mutations were detected in 27 of the 54 (50%) OCA patients from 18 unrelated families, representing 9 different marriage/ethnic groups from 11 districts of West Bengal. Three TYR variants: NM_000372.4: c.391 A > G, NP_000363.1: p. Lys131Glu; NM_000372.4: c.1037G > T; NP_000363.1: p. Gly346Val, NM_000372.4: c.715 C > T; NP_000363.1:p.Arg239Trp was identified for the first time in Eastern Indian OCA cases. A novel nonsense variant: NM_016180.5: c.389 T > A, NP_057264.4: p. Leu130* and a novel synonymous variation NM_016180.5: c.1092 A > G; NP_057264.4: p.364E = were identified in SLC45A2. Additionally, NM_016180.5: c.904A > T; NP_057264.4: p. Thre302Ser was identified for the first time in any Eastern Indian OCA case. We identified 2 previously reported mutations in OCA2. In concordance with previous reports, NM_000372.4: c.832C > T, NP_000363.1: p. (Arg278*) was the commonest TYR mutation. CONCLUSION The results of our study enrich the mutational spectrum of the known OCA causing genes in Eastern India, which would facilitate accurate diagnosis, familial screening, carrier detection and containment of the disease load.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Kausik Ganguly
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Asim Sil
- Vivekananda Mission Ashram Netra Niramay Niketan, Purba Midnapore, Haldia, West Bengal, India
| | - Kunal Ray
- ATGC Diagnostics Pvt. Ltd., 21/2A Gorachand Road, Park Circus, Kolkata, West Bengal, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
3
|
Shahroudi MJ, Rezaei M, Mirzaeipour M, Saravani M, Shahraki-Ghadimi H, Arab S. Association between miR-202, miR-211, and miR-1238 gene polymorphisms and risk of vitiligo. Arch Dermatol Res 2024; 316:118. [PMID: 38597990 DOI: 10.1007/s00403-024-02847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 04/11/2024]
Abstract
Vitiligo, as a common pigment defect in the skin, hair, and mucous membranes, results from the destruction of melanocytes. Recent investigations have shown that miRNA dysregulation contributes in the pathogenesis of vitiligo. Therefore, in this research, our aim is to explore the relationship between miR-202 rs12355840, miR-211 rs8039189, and miR-1238 rs12973308 polymorphisms and susceptibility to vitiligo. A total number of 136 vitiligo patients and 129 healthy individuals as a control group were included in this research. The salting out approach was implemented to extraction genomic DNA. The genetic polymorphisms of miR-202 rs12355840, miR-211 rs8039189, and miR-1238 rs12973308 were determined using PCR-RFLP approach. The findings revealed that miR-202 rs12355840 polymorphism under codominant (CT and TT genotypes), dominant, recessive, overdominant, and also allelic models is correlated with increased risk of vitiligo. In addition, codominant, dominant, overdominant, as well as allelic models of miR-211 rs8039189 polymorphism decrease risk of vitiligo. No significant relationship was observed between the miR-1238 rs12973308 polymorphism and susceptibility to vitiligo. The miR-211 rs8039189 polymorphism may serve a protective effect on vitiligo development and miR-202 rs12355840 polymorphism may act as a risk factor for vitiligo susceptibility.
Collapse
Affiliation(s)
- Mahdieh Jafari Shahroudi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mohsen Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki-Ghadimi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Arab
- Khatam Al Anbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Dutta T, Sengupta S, Adhya S, Saha A, Sengupta D, Mondal R, Naskar S, Bhattacharjee S, Sengupta M. Identification of TNF-α as Major Susceptible Risk Locus for Vitiligo: A Systematic Review and Meta-Analysis Study in the Asian Population. Dermatology 2024; 240:376-386. [PMID: 38377977 DOI: 10.1159/000536480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
INTRODUCTION Vitiligo is a common depigmentation disorder characterized by defined white patches on the skin and affecting around 0.5% to 2% of the general population. Genetic association studies have identified several pre-disposing genes and single nucleotide polymorphisms (SNPs) for vitiligo pathogenesis; nonetheless, the reports are often conflicting and rarely conclusive. This comprehensive meta-analysis study was designed to evaluate the effect of the risk variants on vitiligo aetiology and covariate stratified vitiligo risk in the Asian population, considering all the studies published so far. METHODS We followed a systematic and comprehensive search to identify the relevant vitiligo-related candidate gene association studies in PubMed using specific keywords. After data extraction, we calculated, for the variants involved, the study-level unadjusted odds ratio, standard errors, and 95% confidence intervals by using logistic regression with additive, dominant effect, and recessive models using R software package (R, 3.4.2) "metafor." Subgroup analysis was performed using logistic regression (generalized linear model; "glm") of disease status on subgroup-specific genotype counts. For a better understanding of the likely biological function of vitiligo-associated variant obtained through the meta-analysis, in silico functional analyses, through standard publicly available web tools, were also conducted. RESULTS Thirty-one vitiligo-associated case-control studies on eleven SNPs were analysed in our study. In the fixed-effect meta-analysis, one variant upstream of TNF-α gene: rs1800629 was found to be associated with vitiligo risk in the additive (p = 4.26E-06), dominant (p = 1.65E-7), and recessive (p = 0.000453) models. After Benjamini-Hochberg false discovery rate (FDR) correction, rs1800629/TNF-α was found to be significant at 5% FDR in the dominant (padj = 1.82E-6) and recessive models (padj = 0.0049). In silico characterization revealed the prioritized variant to be regulatory in nature and thus having potential to contribute towards vitiligo pathogenesis. CONCLUSION Our study constitutes the first comprehensive meta-analysis of candidate gene-based association studies reported in the whole of the Asian population, followed by an in silico analysis of the vitiligo-associated variant. According to the findings of our study, TNF-α single nucleotide variant rs1800629G>A has a risk association, potentially contributing to vitiligo pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Suchismita Adhya
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Ritisri Mondal
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Swarnadru Naskar
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Sui JY, Eichenfield DZ, Sun BK. The role of enhancers in psoriasis and atopic dermatitis. Br J Dermatol 2023; 190:10-19. [PMID: 37658835 DOI: 10.1093/bjd/ljad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Regulatory elements, particularly enhancers, play a crucial role in disease susceptibility and progression. Enhancers are DNA sequences that activate gene expression and can be affected by epigenetic modifications, interactions with transcription factors (TFs) or changes to the enhancer DNA sequence itself. Altered enhancer activity impacts gene expression and contributes to disease. In this review, we define enhancers and the experimental techniques used to identify and characterize them. We also discuss recent studies that examine how enhancers contribute to atopic dermatitis (AD) and psoriasis. Articles in the PubMed database were identified (from 1 January 2010 to 28 February 2023) that were relevant to enhancer variants, enhancer-associated TFs and enhancer histone modifications in psoriasis or AD. Most enhancers associated with these conditions regulate genes affecting epidermal homeostasis or immune function. These discoveries present potential therapeutic targets to complement existing treatment options for AD and psoriasis.
Collapse
Affiliation(s)
- Jennifer Y Sui
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Dawn Z Eichenfield
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
| |
Collapse
|