1
|
Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER, Curry JM, Cassat JE, Skaar EP. Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus. Nat Commun 2024; 15:6734. [PMID: 39112491 PMCID: PMC11306626 DOI: 10.1038/s41467-024-51144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics are examined using both quantitative proteomics and transposon sequencing. These screens indicate that arginine metabolism is involved in antibiotic tolerance within a biofilm and support the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction induces antibiotic tolerance via inhibition of protein synthesis. In murine skin and bone infection models, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Jeffrey A Freiberg
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Valeria M Reyes Ruiz
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin C Murdoch
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin R Green
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jacob M Curry
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Cassat
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Snell A, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596650. [PMID: 38853917 PMCID: PMC11160706 DOI: 10.1101/2024.05.30.596650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal tract (GIT) of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase (ADI) pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GIT or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding of how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex Snell
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Dawn A. Manias
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | | - Gary M. Dunny
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | |
Collapse
|
3
|
Reslane I, Handke LD, Watson GF, Shinde D, Ahn JS, Endres JL, Razvi F, Gilbert EA, Bayles KW, Thomas VC, Lehman MK, Fey PD. Glutamate -dependent arginine biosynthesis requires the inactivation of spoVG, sarA, and ahrC in Staphylococcus aureus. J Bacteriol 2024; 206:e0033723. [PMID: 38299858 PMCID: PMC10883023 DOI: 10.1128/jb.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke D. Handke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gabrielle F. Watson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jong-Sam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer L. Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily A. Gilbert
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - McKenzie K. Lehman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Liu X, Wang Z, You Z, Wang W, Wang Y, Wu W, Peng Y, Zhang S, Yun Y, Zhang J. Transcriptomic analysis of cell envelope inhibition by prodigiosin in methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1333526. [PMID: 38318338 PMCID: PMC10839101 DOI: 10.3389/fmicb.2024.1333526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading threat to public health as it is resistant to most currently available antibiotics. Prodigiosin is a secondary metabolite of microorganisms with broad-spectrum antibacterial activity. This study identified a significant antibacterial effect of prodigiosin against MRSA with a minimum inhibitory concentration as low as 2.5 mg/L. The results of scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy indicated that prodigiosin inhibited biofilm formation in S. aureus USA300, while also destroying the structure of the cell wall and cell membrane, which was confirmed by transmission electron microscopy. At a prodigiosin concentration of 1.25 mg/L, biofilm formation was inhibited by 76.24%, while 2.5 mg/L prodigiosin significantly reduced the vitality of MRSA cells in the biofilm. Furthermore, the transcriptomic results obtained at 1/8 MIC of prodigiosin indicated that 235and 387 genes of S. aureus USA300 were significantly up- and downregulated, respectively. The downregulated genes were related to two-component systems, including the transcriptional regulator LytS, quorum sensing histidine kinases SrrB, NreA and NreB, peptidoglycan biosynthesis enzymes (MurQ and GlmU), iron-sulfur cluster repair protein ScdA, microbial surface components recognizing adaptive matrix molecules, as well as the key arginine synthesis enzymes ArcC and ArgF. The upregulated genes were mainly related to cell wall biosynthesis, as well as two-component systems including vancomycin resistance-associated regulator, lipoteichoic acid biosynthesis related proteins DltD and DltB, as well as the 9 capsular polysaccharide biosynthesis proteins. This study elucidated the molecular mechanisms through which prodigiosin affects the cell envelope of MRSA from the perspectives of cell wall synthesis, cell membrane and biofilm formation, providing new potential targets for the development of antimicrobials for the treatment of MRSA.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Zonglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wei Wang
- Clinical Laboratory of First Hospital of Jiaxing, Jiaxing, China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Suping Zhang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Yinan Yun
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
5
|
Liu Z, Guo K, Yan L, Zhang K, Wang Y, Ding X, Zhao N, Xu FJ. Janus nanoparticles targeting extracellular polymeric substance achieve flexible elimination of drug-resistant biofilms. Nat Commun 2023; 14:5132. [PMID: 37612285 PMCID: PMC10447547 DOI: 10.1038/s41467-023-40830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Safe and efficient antibacterial materials are urgently needed to combat drug-resistant bacteria and biofilm-associated infections. The rational design of nanoparticles for flexible elimination of biofilms remains challenging. Herein, we propose the fabrication of Janus-structured nanoparticles targeting extracellular polymeric substance to achieve dispersion or near-infrared (NIR) light-activated photothermal elimination of drug-resistant biofilms, respectively. Asymmetrical Janus-structured dextran-bismuth selenide (Dex-BSe) nanoparticles are fabricated to exploit synergistic effects of both components. Interestingly, Janus Dex-BSe nanoparticles realize enhanced dispersal of biofilms over time. Alternatively, taking advantage of the preferential accumulation of nanoparticles at infection sites, the self-propelled active motion induced by the unique Janus structure enhances photothermal killing effect. The flexible application of Janus Dex-BSe nanoparticles for biofilm removal or NIR-triggered eradication in vivo is demonstrated by Staphylococcus aureus-infected mouse excisional wound model and abscess model, respectively. The developed Janus nanoplatform holds great promise for the efficient elimination of drug-resistant biofilms in diverse antibacterial scenarios.
Collapse
Affiliation(s)
- Zhiwen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kangli Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Girel S, Guillarme D, Fekete S, Rudaz S, González-Ruiz V. Investigation of several chromatographic approaches for untargeted profiling of central carbon metabolism. J Chromatogr A 2023; 1697:463994. [PMID: 37086708 DOI: 10.1016/j.chroma.2023.463994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Monitoring the central carbon metabolism (CCM) network using liquid chromatography/mass spectrometry (LC-MS) analysis is hampered by the diverse chemical nature of its analytes, which are extremely difficult to analyze using single chromatographic conditions. Furthermore, CCM-related compounds present non-specific adsorption on metal surfaces, causing detrimental chromatographic effects and sensitivity loss. In this study, polar reversed-phase, mixed-mode (MMC), and zwitterionic hydrophilic interaction chromatography (HILIC) featuring low-adsorption hardware were investigated towards untargeted analysis of biological samples with a focus on energy metabolism-related analytes. Best results were achieved with sulfoalkylbetaine HILIC with different supports, where polymeric option featured the highest coverage and inert hybrid silica facilitated best throughput and kinetic performance at a cost of less selectivity for small carboxylic acids. MMC demonstrated excellent performance for strongly anionic analytes such as multiresidue phosphates. The obtained experimental data also suggested that an additional hydrophilic modulation might be necessary to facilitate better resolution of carboxylic acids in zHILIC mode, as found during the application of the developed method to study the effect of two different mutations on the energy metabolism of S. aureus.
Collapse
Affiliation(s)
- Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland.
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Szabolcs Fekete
- Waters Corporation, located in CMU-Rue Michel-Servet 1, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
8
|
Peng Q, Tang X, Dong W, Sun N, Yuan W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics (Basel) 2022; 12:antibiotics12010012. [PMID: 36671212 PMCID: PMC9854888 DOI: 10.3390/antibiotics12010012] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Sun
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| |
Collapse
|