1
|
Ni DJ, Yang QF, Nie L, Xu J, He SZ, Yao J. The past, present, and future of endoscopic management for biliary strictures: technological innovations and stent advancements. Front Med (Lausanne) 2024; 11:1334154. [PMID: 39669990 PMCID: PMC11634603 DOI: 10.3389/fmed.2024.1334154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Biliary stricture can be induced by intrinsic narrowing and extrinsic compression, with the majority of cases being malignant. Clinically, distinguishing between benign and malignant biliary strictures remains a considerable challenge, and the ongoing disagreement over the optimal choice of biliary stents significantly influences treatment strategies and impacts patients' survival and prognosis. The utilization and advancement of endoscopic techniques have heightened the diagnostic sensitivity for biliary strictures. Concurrently, innovative technologies such as endoscopic ultrasound and magnetic compression anastomosis emerge as viable alternatives when endoscopic retrograde cholangiopancreatography (ERCP) is not an option, providing fresh insights for the clinical management of these patients. Traditional plastic and metal stents, characterized by their complex application and limited scope, have been unable to fully satisfy clinical needs. The introduction of novel stent varieties has notably improved this scenario, marking a considerable progression towards precision medicine. However, the clinical validation of the diverse stent materials available is incomplete. Hence, a thorough discussion on the present state and evolving trends of biliary stents is warranted.
Collapse
Affiliation(s)
- Dong-Jin Ni
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Qi-Fan Yang
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Nie
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Jian Xu
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Si-Zhe He
- Shanghai Academy of Fine Arts, Shanghai University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Cordista V, Patel S, Lawson R, Lee G, Verheyen M, Westbrook A, Shelton N, Sapkota P, Zabala Valencia I, Gaddam C, Thomas J. Towards a Customizable, SLA 3D-Printed Biliary Stent: Optimizing a Commercially Available Resin and Predicting Stent Behavior with Accurate In Silico Testing. Polymers (Basel) 2024; 16:1978. [PMID: 39065295 PMCID: PMC11280906 DOI: 10.3390/polym16141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation of the bile ducts and surrounding tissues can impede bile flow from the liver into the intestines. If this occurs, a plastic or self-expanding metal (SEM) stent is placed to restore bile drainage. United States (US) Food and Drug Administration (FDA)-approved plastic biliary stents are less expensive than SEMs but have limited patency and can occlude bile flow if placed spanning a duct juncture. Recently, we investigated the effects of variations to post-processing and autoclaving on a commercially available stereolithography (SLA) resin in an effort to produce a suitable material for use in a biliary stent, an FDA Class II medical device. We tested six variations from the manufacturer's recommended post-processing and found that tripling the isopropanol (IPA) wash time to 60 min and reducing the time and temperature of the UV cure to 10 min at 40 °C, followed by a 30 min gravity autoclave cycle, yielded a polymer that was flexible and non-cytotoxic. In turn, we designed and fabricated customizable, SLA 3D-printed polymeric biliary stents that permit bile flow at a duct juncture and can be deployed via catheter. Next, we generated an in silico stent 3-point bend test to predict displacements and peak stresses in the stent designs. We confirmed our simulation accuracy with experimental data from 3-point bend tests on SLA 3D-printed stents. Unfortunately, our 3-point bend test simulation indicates that, when bent to the degree needed for placement via catheter (~30°), the peak stress the stents are predicted to experience would exceed the yield stress of the polymer. Thus, the risk of permanent deformation or damage during placement via catheter to a stent printed and post-processed as we have described would be significant. Moving forward, we will test alternative resins and post-processing parameters that have increased elasticity but would still be compatible with use in a Class II medical device.
Collapse
Affiliation(s)
- Victoria Cordista
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
- McKelvey School of Engineering, Washington University, St. Louis, MO 63114, USA
| | - Sagar Patel
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rebecca Lawson
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Gunhee Lee
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Morgan Verheyen
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Ainsley Westbrook
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Nathan Shelton
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Prakriti Sapkota
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Isabella Zabala Valencia
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Cynthia Gaddam
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| | - Joanna Thomas
- School of Engineering, Mercer University, Macon, GA 31207, USA; (V.C.); (S.P.); (R.L.); (G.L.); (M.V.); (A.W.); (N.S.); (P.S.); (I.Z.V.); (C.G.)
| |
Collapse
|
3
|
Ledenko M, Toskich B, Mehner C, Ceylan H, Patel T. Therapeutic biliary stents: applications and opportunities. Expert Rev Med Devices 2024; 21:399-409. [PMID: 38716580 DOI: 10.1080/17434440.2024.2341960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Biliary stents are used to optimize ductal patency and enable bile flow in the management of obstruction or injury related to biliary tract tumors, strictures, stones, or leaks. Although direct therapeutic applications of biliary stents are less well developed, stents can be used to deliver drugs, radioisotopes, and photodynamic therapy. AREAS COVERED This report provides an in-depth overview of the clinical indications, and therapeutic utility of biliary stents. Unique considerations for the design of biliary stents are described. The properties and functionalities of materials used for stents such as metal alloys, plastic polymers, or biodegradable materials are described, and opportunities for design of future stents are outlined. Current and potential applications of stents for therapeutic applications for biliary tract diseases are described. EXPERT OPINION Therapeutic biliary stents could be used to minimize inflammation, prevent stricture formation, reduce infections, or provide localized anti-cancer therapy for biliary tract cancers. Stents could be transformed into therapeutic platforms using advanced materials, 3D printing, nanotechnology, and artificial intelligence. Whilst clinical study and validation will be required for adoption, future advances in stent design and materials are expected to expand the use of therapeutic biliary stents for the treatment of biliary tract disorders.
Collapse
Affiliation(s)
- Matthew Ledenko
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Beau Toskich
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
4
|
Shi W, Wang J, Gao J, Zou X, Dong Q, Huang Z, Sheng J, Guan C, Xu Y, Cui Y, Zhong X. Utilization of 3D printing technology in hepatopancreatobiliary surgery. J Zhejiang Univ Sci B 2024; 25:123-134. [PMID: 38303496 PMCID: PMC10835207 DOI: 10.1631/jzus.b2300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/23/2023] [Indexed: 02/03/2024]
Abstract
The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.
Collapse
Affiliation(s)
- Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xian 710032, China
| | - Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China. ,
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China. ,
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. ,
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China. ,
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310053, China. ,
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China. ,
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China. ,
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
5
|
Yang K, Sun W, Cui L, Zou Y, Wen C, Zeng R. Advances in functional coatings on biliary stents. Regen Biomater 2024; 11:rbae001. [PMID: 38343880 PMCID: PMC10858350 DOI: 10.1093/rb/rbae001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2025] Open
Abstract
Biliary stenting is an important interventional method for the prevention and treatment of biliary tract diseases. However, complications, such as postoperative biliary infection and restenosis, frequently occur due to the extensive scope of the biliary system and the complex composition of bile. The combination of coating technology and biliary stents is expected to bring new approaches to the solution of these problems. The cutting-edge advance on functional coatings on biliary stents is reviewed from seven perspectives: anticorrosion, -bacterial, -tumor, stone-dissolving, X-ray visibility, antistent migration and functional composite coatings. The development trend is also discussed. Overall, the performance of the numerous functional coatings for various purposes is generally up to expectations, but the balance between the medications' effectiveness and their safety needs to be further adjusted. Many contemporary investigations have advanced to the level of animal experiments, offering crucial fundamental assurance for broader human studies. The combination of biliary stents and functional coatings is an innovative idea with great potential for future development.
Collapse
Affiliation(s)
- Kaining Yang
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenxin Sun
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lanyue Cui
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuhong Zou
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Rongchang Zeng
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Ullah M, Bibi A, Wahab A, Hamayun S, Rehman MU, Khan SU, Awan UA, Riaz NUA, Naeem M, Saeed S, Hussain T. Shaping the Future of Cardiovascular Disease by 3D Printing Applications in Stent Technology and its Clinical Outcomes. Curr Probl Cardiol 2024; 49:102039. [PMID: 37598773 DOI: 10.1016/j.cpcardiol.2023.102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. In recent years, 3D printing technology has ushered in a new era of innovation in cardiovascular medicine. 3D printing in CVD management encompasses various aspects, from patient-specific models and preoperative planning to customized medical devices and novel therapeutic approaches. In-stent technology, 3D printing has revolutionized the design and fabrication of intravascular stents, offering tailored solutions for complex anatomies and individualized patient needs. The advantages of 3D-printed stents, such as improved biocompatibility, enhanced mechanical properties, and reduced risk of in-stent restenosis. Moreover, the clinical trials and case studies that shed light on the potential of 3D printing technology to improve patient outcomes and revolutionize the field has been comprehensively discussed. Furthermore, regulatory considerations, and challenges in implementing 3D-printed stents in clinical practice are also addressed, underscoring the need for standardization and quality assurance to ensure patient safety and device reliability. This review highlights a comprehensive resource for clinicians, researchers, and policymakers seeking to harness the full potential of 3D printing technology in the fight against CVD.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa, Pakistan.
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan
| | - Noor-Ul-Ain Riaz
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan.
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Talib Hussain
- Women Dental College Abbottabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|