1
|
Kulkarni T, Robinson OM, Dutta A, Mukhopadhyay D, Bhattacharya S. Machine learning-based approach for automated classification of cell and extracellular matrix using nanomechanical properties. Mater Today Bio 2024; 25:100970. [PMID: 38312803 PMCID: PMC10835007 DOI: 10.1016/j.mtbio.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olivia-Marie Robinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ayan Dutta
- School of Computing, University of North Florida, Jacksonville, FL, 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
2
|
Seal S, Carreras-Puigvert J, Singh S, Carpenter AE, Spjuth O, Bender A. From pixels to phenotypes: Integrating image-based profiling with cell health data as BioMorph features improves interpretability. Mol Biol Cell 2024; 35:mr2. [PMID: 38170589 PMCID: PMC10916876 DOI: 10.1091/mbc.e23-08-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Cell Painting assays generate morphological profiles that are versatile descriptors of biological systems and have been used to predict in vitro and in vivo drug effects. However, Cell Painting features extracted from classical software such as CellProfiler are based on statistical calculations and often not readily biologically interpretable. In this study, we propose a new feature space, which we call BioMorph, that maps these Cell Painting features with readouts from comprehensive Cell Health assays. We validated that the resulting BioMorph space effectively connected compounds not only with the morphological features associated with their bioactivity but with deeper insights into phenotypic characteristics and cellular processes associated with the given bioactivity. The BioMorph space revealed the mechanism of action for individual compounds, including dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA replication. Overall, BioMorph space offers a biologically relevant way to interpret the cell morphological features derived using software such as CellProfiler and to generate hypotheses for experimental validation.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Zhang H, AbdulJabbar K, Grunewald T, Akarca AU, Hagos Y, Sobhani F, Lecat CSY, Patel D, Lee L, Rodriguez-Justo M, Yong K, Ledermann JA, Le Quesne J, Hwang ES, Marafioti T, Yuan Y. Self-supervised deep learning for highly efficient spatial immunophenotyping. EBioMedicine 2023; 95:104769. [PMID: 37672979 PMCID: PMC10493897 DOI: 10.1016/j.ebiom.2023.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Efficient biomarker discovery and clinical translation depend on the fast and accurate analytical output from crucial technologies such as multiplex imaging. However, reliable cell classification often requires extensive annotations. Label-efficient strategies are urgently needed to reveal diverse cell distribution and spatial interactions in large-scale multiplex datasets. METHODS This study proposed Self-supervised Learning for Antigen Detection (SANDI) for accurate cell phenotyping while mitigating the annotation burden. The model first learns intrinsic pairwise similarities in unlabelled cell images, followed by a classification step to map learnt features to cell labels using a small set of annotated references. We acquired four multiplex immunohistochemistry datasets and one imaging mass cytometry dataset, comprising 2825 to 15,258 single-cell images to train and test the model. FINDINGS With 1% annotations (18-114 cells), SANDI achieved weighted F1-scores ranging from 0.82 to 0.98 across the five datasets, which was comparable to the fully supervised classifier trained on 1828-11,459 annotated cells (-0.002 to -0.053 of averaged weighted F1-score, Wilcoxon rank-sum test, P = 0.31). Leveraging the immune checkpoint markers stained in ovarian cancer slides, SANDI-based cell identification reveals spatial expulsion between PD1-expressing T helper cells and T regulatory cells, suggesting an interplay between PD1 expression and T regulatory cell-mediated immunosuppression. INTERPRETATION By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for histology multiplex imaging data. FUNDING This study was funded by the Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre.
Collapse
Affiliation(s)
- Hanyun Zhang
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Tami Grunewald
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - Yeman Hagos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Faranak Sobhani
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Catherine S Y Lecat
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Dominic Patel
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Lydia Lee
- Research Department of Hematology, Cancer Institute, University College London, UK
| | | | - Kwee Yong
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Jonathan A Ledermann
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; CRUK Beatson Institute, Garscube Estate, Glasgow, UK; Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|