1
|
Kometani K, Yorimitsu T, Jo N, Yamaguchi E, Kikuchi O, Fukahori M, Sawada T, Tsujimoto Y, Sunami A, Li M, Ito T, Pretemer Y, Gao Y, Hidaka Y, Yamamoto M, Kaku N, Nakagama Y, Kido Y, Grifoni A, Sette A, Nagao M, Morita S, Nakajima TE, Muto M, Hamazaki Y. Booster COVID-19 mRNA vaccination ameliorates impaired B-cell but not T-cell responses in older adults. Front Immunol 2024; 15:1455334. [PMID: 39717779 PMCID: PMC11663736 DOI: 10.3389/fimmu.2024.1455334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Age-associated differences in the effect of repetitive vaccination, particularly on memory T-cell and B-cell responses, remain unclear. While older adults (aged ≥65 years) exhibited enhanced IgG responses following COVID-19 mRNA booster vaccination, they produced fewer spike-specific circulating follicular helper T cells-1 than younger adults. Similarly, the cytotoxic CD8+ T-cell response remained diminished with reduced PD-1 expression even after booster vaccination compared with that in younger adults, suggesting impaired memory T-cell activation in older adults. In contrast, although B-cell responses in older adults were weaker than those in younger adults in the primary response, the responses were significantly enhanced upon booster vaccination, reaching levels comparable with that observed in younger adults. Therefore, while booster vaccination ameliorates impaired humoral immunity in older adults by efficiently stimulating memory B-cell responses, it may less effectively enhance T-cell-mediated cellular immunity. Our study provides insights for the development of effective therapeutic and vaccine strategies for the most vulnerable older population.
Collapse
Affiliation(s)
- Kohei Kometani
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takaaki Yorimitsu
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erina Yamaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan
| | - Masaru Fukahori
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Sawada
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yoshitaka Tsujimoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Sunami
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mengqian Li
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takeshi Ito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yann Pretemer
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuxian Gao
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Natsuko Kaku
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, United States
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takako E. Nakajima
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Manabu Muto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto, Japan
| |
Collapse
|
2
|
Quach HQ, Ratishvili T, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. Immunogenicity of a peptide-based vaccine for measles: a pilot evaluation in a mouse model. Sci Rep 2024; 14:18776. [PMID: 39138335 PMCID: PMC11322560 DOI: 10.1038/s41598-024-69825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Although neutralizing antibody is an established correlate of protection for measles, T cell-mediated responses play at least two critical roles in immunity to measles: first, through provision of 'help' enabling robust humoral immune responses; and second, through clearance of measles virus-infected cells. Previously, we identified 13 measles-derived peptides that bound to human leukocyte antigen (HLA) molecules in Priess cells infected with measles virus. In this study, we evaluated the immunogenicity of these peptides in a transgenic mouse model. Our results demonstrated that these peptides induced Th1-biased immune responses at varying levels. Of the 13 peptides, the top four immunogenic peptides were further selected for a viral challenge study in mice. A vaccine based on a combination of these four peptides reduced morbidity and weight loss after viral challenge compared to placebo. Our results emphasize the potential of T cell-mediated, peptide-based vaccines against measles.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Ratishvili T, Quach HQ, Haralambieva IH, Suryawanshi YR, Ovsyannikova IG, Kennedy RB, Poland GA. A multifaceted approach for identification, validation, and immunogenicity of naturally processed and in silico-predicted highly conserved SARS-CoV-2 peptides. Vaccine 2024; 42:162-174. [PMID: 38105139 DOI: 10.1016/j.vaccine.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 remains a major global public health concern. Antibody waning and immune escape variant emergence necessitate the development of next generation vaccines that induce cross-reactive durable immune responses. T cell responses to SARS-CoV-2 demonstrate higher conservation, antigenic breadth, and longevity than antibody responses. Therefore, we sought to identify pathogen-derived T cell epitopes for a potential peptide-based vaccine. We pursued an approach leveraging: 1) liquid chromatography and tandem mass spectrometry (LC-MS/MS)-based identification of peptides from ancestral SARS-CoV-2-infected cell lines, 2) epitope prediction algorithms, and 3) overlapping peptide libraries. From this strategy, we identified 380 unique SARS-CoV-2-derived peptide sequences, including 53 antigenic HLA class I and class II peptides from multiple structural and non-structural/accessory viral proteins. These peptide sequences were highly conserved across variants of concern/interest (VoC/VoIs), and are estimated to achieve coverage of >96% of the world population. Our findings validate this discovery pipeline for peptide identification and immunogenicity testing, and are a crucial step toward the development of a next-generation multi-epitope SARS-CoV-2 peptide vaccine, and a novel vaccine platform methodology.
Collapse
Affiliation(s)
- Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yogesh R Suryawanshi
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Traut CC, Jones JL, Sanders RA, Clark LR, Hamill MM, Stavrakis G, Sop J, Beckey TP, Keller SC, Gilliams EA, Cochran WV, Laeyendecker O, Manabe YC, Mostafa HH, Thomas DL, Hansoti B, Gebo KA, Blankson JN. Orthopoxvirus-Specific T-Cell Responses in Convalescent Mpox Patients. J Infect Dis 2024; 229:54-58. [PMID: 37380166 PMCID: PMC10786252 DOI: 10.1093/infdis/jiad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023] Open
Abstract
Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.
Collapse
Affiliation(s)
- Caroline C Traut
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Renata A Sanders
- Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Laura R Clark
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Matthew M Hamill
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Sop
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Tyler P Beckey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Sara C Keller
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | | | - Willa V Cochran
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yukari C Manabe
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Bhakti Hansoti
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Tripathi T. Advances in vaccines: revolutionizing disease prevention. Sci Rep 2023; 13:11748. [PMID: 37474542 PMCID: PMC10359443 DOI: 10.1038/s41598-023-38798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Affiliation(s)
- Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
6
|
Liang J, Wu Y, Lan K, Dong C, Wu S, Li S, Zhou HB. Antiviral PROTACs: Opportunity borne with challenge. CELL INSIGHT 2023; 2:100092. [PMID: 37398636 PMCID: PMC10308200 DOI: 10.1016/j.cellin.2023.100092] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 07/04/2023]
Abstract
Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.
Collapse
Affiliation(s)
- Jinsen Liang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chune Dong
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|