1
|
Chai Y, Han W, Zhang Y, Du Y, Wang B, Chen M, Li N, Luo W, Zha X, Wang L, Ou L. Cellulose acetate/metal-organic framework composite beads with macroporous adsorption channels as a novel hemoadsorbent for effective virus capture. Biomater Sci 2024; 12:5091-5104. [PMID: 39219491 DOI: 10.1039/d4bm00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Due to their rapid spread, high variability, and drug-resistant strains, new viral infections are continuously emerging. A lack of effective antiviral drugs and vaccines, resulting in disease and death, has significant socioeconomic consequences. Hemoperfusion can effectively adsorb and remove toxins from the blood, thus purifying the blood and serving as an acute treatment. Therefore, the aim of this study was to construct adsorbents to selectively remove viruses from the blood to quickly treat pathogen infection. We reported on new metal-organic framework (MOF)-polymer beads based on MIL-53(Al) and cellulose acetate (CNC), which were prepared by a one-step phase inversion method and applied as a viral hemo-adsorbent for the first time. The characterization results demonstrated that MIL-53(Al) was well dispersed in the CNC matrix. The adsorption results demonstrated that the capture efficiency of the human immunodeficiency virus (HIV) could exceed 99.93%, and the corresponding infectious titer decreased by approximately 103 times in clinical application. Moreover, CNC/MIL-53 exhibited low hemolysis ratios and good anticoagulant properties. Furthermore, molecular dynamics simulations revealed that the interplay of hydrogen bonding was the governing physisorption mechanism. Overall, CNC/MIL-53 could serve as a new type of hemoperfusion adsorbent for virus removal from blood and provide a new treatment pathway to mitigate epidemics.
Collapse
Affiliation(s)
- Yamin Chai
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenyan Han
- Henan University of Chinese Medicine, Henan, 450046, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Luo
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoyu Zha
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Hubei, 430074, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Yang L, Wang K, Guo L, Hu X, Zhou M. Unveiling the potential of HKUST-1: synthesis, activation, advantages and biomedical applications. J Mater Chem B 2024; 12:2670-2690. [PMID: 38411271 DOI: 10.1039/d3tb02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as a unique class of nanostructured materials, resulting from the self-assembly of metal ions or clusters with organic ligands, offering a wide range of applications in fields such as drug delivery, gas catalysis, and electrochemical sensing. Among them, HKUST-1, a copper-based MOF, has gained substantial attention due to its remarkable three-dimensional porous structure. Comprising copper ions and benzene-1,3,5-tricarboxylic acid, HKUST-1 exhibits an extraordinary specific surface area and pronounced porosity, making it a promising candidate in biomedicine. Notably, the incorporation of copper ions endows HKUST-1 with noteworthy activities, including antitumor, antibacterial, and wound healing-promoting properties. In this comprehensive review, we delve into the various synthesis methods and activation pathways employed in the preparation of HKUST-1. We also explore the distinct advantages of HKUST-1 in terms of its structural properties and functionalities. Furthermore, we investigate the exciting and rapidly evolving biomedical applications of HKUST-1. From its role in tumor treatment to its antibacterial effects and its ability to promote wound healing, we showcase the multifaceted potential of HKUST-1 in addressing critical challenges in biomedicine.
Collapse
Affiliation(s)
- Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiao Hu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
5
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
6
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Wang X, Clavier G, Zhang Y, Batra K, Xiao N, Maurin G, Ding B, Tissot A, Serre C. A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs. Chem Sci 2023; 14:5386-5395. [PMID: 37234896 PMCID: PMC10207894 DOI: 10.1039/d3sc00106g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/02/2023] [Indexed: 05/28/2023] Open
Abstract
COVID-19 has afflicted people's lives worldwide. Interleukin-6 (IL-6) is an important COVID-19 biomarker in human body fluids that can be used as a reference to monitor COVID-19 in real-time and therefore to reduce the risk of virus transmission. On the other hand, oseltamivir is a potential COVID-19 curing drug, but its overuse easily leads to hazardous side effects, calling for its real time monitoring in body fluids. For these purposes, a new yttrium metal-organic framework (Y-MOF) has been synthesized, in which the 5-(4-(imidazole-1-yl)phenyl)isophthalic linker contains a large aromatic backbone capable of strongly interacting with DNA sequences through π-π stacking interactions, which makes it appealing to build a unique sensor based on DNA functionalized MOFs. The MOF/DNA sequence hybrid luminescent sensing platform presents excellent optical properties associated with a high Förster resonance energy transfer (FRET) efficiency. Furthermore, to construct a dual emission sensing platform, a 5'-carboxylfluorescein (FAM) labeled DNA sequence (S2) with a stem-loop structure that can specifically interact with IL-6 has been associated with the Y-MOF. The resulting Y-MOF@S2 exhibits an efficient ratiometric detection of IL-6 in human body fluids with an extremely high Ksv value 4.3 × 108 M-1 and a low detection limit (LOD) of 70 pM. Finally, the Y-MOF@S2@IL-6 hybrid platform allows the detection of oseltamivir with high sensitivity (Ksv value is as high as 5.6 × 105 M-1 and LOD is 54 nM), due to the fact that oseltamivir can disconnect the loop stem structure constructed by S2, leading to a strong quenching effect towards Y-MOF@S2@IL-6. The nature of the interactions between oseltamivir and Y-MOF has been elucidated using density functional theory calculations while the sensing mechanism for the dual detection of IL-6 and oseltamivir has been deciphered based on luminescence lifetime tests and confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Xinrui Wang
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Kamal Batra
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
| | - Nanan Xiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | | | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|