1
|
Khamse S, Alizadeh S, Khorshid HRK, Delbari A, Tajeddin N, Ohadi M. A Hypermutable Region in the DISP2 Gene Links to Natural Selection and Late-Onset Neurocognitive Disorders in Humans. Mol Neurobiol 2024; 61:8777-8786. [PMID: 38565786 DOI: 10.1007/s12035-024-04155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
(CCG) short tandem repeats (STRs) are predominantly enriched in genic regions, mutation hotspots for C to T truncating substitutions, and involved in various neurological and neurodevelopmental disorders. However, intact blocks of this class of STRs are widely overlooked with respect to their link with natural selection. The human neuron-specific gene, DISP2 (dispatched RND transporter family member 2), contains a (CCG) repeat in its 5' untranslated region. Here, we sequenced this STR in a sample of 448 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 203) and controls (N = 245). We found that the region spanning the (CCG) repeat was highly mutated, resulting in several flanking (CCG) residues. However, an 8-repeat of the (CCG) repeat was predominantly abundant (frequency = 0.92) across the two groups. While the overall distribution of genotypes was not different between the two groups (p > 0.05), we detected four genotypes in the NCD group only (2% of the NCD genotypes, Mid-p = 0.02), consisting of extreme short alleles, 5- and 6-repeats, that were not detected in the control group. The patients harboring those genotypes received the diagnoses of probable Alzheimer's disease and vascular dementia. We also found six genotypes in the control group only (2.5% of the control genotypes, Mid-p = 0.01) that consisted of the 8-repeat and extreme long alleles, 9- and 10-repeats, of which the 10-repeat was not detected in the NCD group. The (CCG) repeat specifically expanded in primates. In conclusion, we report an indication of natural selection at a novel hypermutable region in the human genome and divergent alleles and genotypes in late-onset NhCDs and controls. These findings reinforce the hypothesis that a collection of rare alleles and genotypes in a number of genes may unambiguously contribute to the cognition impairment component of late-onset NCDs.
Collapse
Affiliation(s)
- S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alizadeh S, Khamse S, Vafadar S, Bernhart SH, Afshar H, Vahedi M, Rezaei O, Delbari A, Ohadi M. The human SMAD9 (GCC) repeat links to natural selection and late-onset neurocognitive disorders. Neurol Sci 2024; 45:5241-5251. [PMID: 38877206 DOI: 10.1007/s10072-024-07637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Whereas (GCC)-repeats are overrepresented in genic regions, and mutation hotspots, they are largely unexplored with regard to their link with natural selection. Across numerous primate species and tissues, SMAD9 (SMAD Family Member 9) reaches highest level of expression in the human brain. This gene contains a (GCC)-repeat in the interval between + 1 and + 60 of the transcription start site, which is in the high-ranking (GCC)-repeats with respect to length. METHODS Here we sequenced this (GCC)-repeat in 396 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 181) and controls (N = 215). RESULTS We detected two predominantly abundant alleles of 7 and 9 repeats, forming 96.2% of the allele pool. The (GCC)7/(GCC)9 ratio was in the reverse order in the NCD group versus controls (p = 0.005), resulting from excess of (GCC)7 in the NCD group (p = 0.003) and (GCC)9 in the controls (p = 0.01). Five genotypes, predominantly consisting of (GCC)7 and lacking (GCC)9 were detected in the NCD group only (p = 0.008). The patients harboring those genotypes received the diagnoses of Alzheimer's disease (AD) and vascular dementia (VD). Five genotypes consisting of (GCC)9 and lacking (GCC)7 were detected in the control group only (p = 0.002). The group-specific genotypes formed approximately 4% of the genotype pool in the human samples studied. CONCLUSION We propose natural selection and a novel locus for late-onset AD and VD at the SMAD9 (GCC)-repeat in humans.
Collapse
Affiliation(s)
- Samira Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Safoura Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Sara Vafadar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Stephan H Bernhart
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Hossein Afshar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Mohsen Vahedi
- Department of Biostatistics and Epidemiology, Paediatric Neurorehabilitation Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Omid Rezaei
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran.
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran.
| |
Collapse
|
3
|
Tajeddin N, Arabfard M, Alizadeh S, Salesi M, Khamse S, Delbari A, Ohadi M. Novel islands of GGC and GCC repeats coincide with human evolution. Gene 2024; 902:148194. [PMID: 38262548 DOI: 10.1016/j.gene.2024.148194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Because of high mutation rate, overrepresentation in genic regions, and link with various neurological, neurodegenerative, and movement disorders, GGC and GCC short tandem repeats (STRs) are prone to natural selection. Among a number of lacking data, the 3-repeats of these STRs remain widely unexplored. RESULTS In a genome-wide search in human, here we mapped GGC and GCC STRs of ≥3-repeats, and found novel islands of up to 45 of those STRs, populating spans of 1 to 2 kb of genomic DNA. RGPD4 and NOC4L harbored the densest (GGC)3 (probability 3.09061E-71) and (GCC)3 (probability 1.72376E-61) islands, respectively, and were human-specific. We also found prime instances of directional incremented density of STRs at specific loci in human versus other species, including the FOXK2 and SKI GGC islands. The genes containing those islands significantly diverged in expression in human versus other species, and the proteins encoded by those genes interact closely in a physical interaction network, consequence of which may be human-specific characteristics such as higher order brain functions. CONCLUSION We report novel islands of GGC and GCC STRs of evolutionary relevance to human. The density, and in some instances, periodicity of these islands support them as a novel genomic entity, which need to be further explored in evolutionary, mechanistic, and functional platforms.
Collapse
Affiliation(s)
- N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Arabfard M, Tajeddin N, Alizadeh S, Salesi M, Bayat H, Khorram Khorshid HR, Khamse S, Delbari A, Ohadi M. Dyads of GGC and GCC form hotspot colonies that coincide with the evolution of human and other great apes. BMC Genom Data 2024; 25:21. [PMID: 38383300 PMCID: PMC10880355 DOI: 10.1186/s12863-024-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND GGC and GCC short tandem repeats (STRs) are of various evolutionary, biological, and pathological implications. However, the fundamental two-repeats (dyads) of these STRs are widely unexplored. RESULTS On a genome-wide scale, we mapped (GGC)2 and (GCC)2 dyads in human, and found monumental colonies (distance between each dyad < 500 bp) of extraordinary density, and in some instances periodicity. The largest (GCC)2 and (GGC)2 colonies were intergenic, homogeneous, and human-specific, consisting of 219 (GCC)2 on chromosome 2 (probability < 1.545E-219) and 70 (GGC)2 on chromosome 9 (probability = 1.809E-148). We also found that several colonies were shared in other great apes, and directionally increased in density and complexity in human, such as a colony of 99 (GCC)2 on chromosome 20, that specifically expanded in great apes, and reached maximum complexity in human (probability 1.545E-220). Numerous other colonies of evolutionary relevance in human were detected in other largely overlooked regions of the genome, such as chromosome Y and pseudogenes. Several of the genes containing or nearest to those colonies were divergently expressed in human. CONCLUSION In conclusion, (GCC)2 and (GGC)2 form unprecedented genomic colonies that coincide with the evolution of human and other great apes. The extent of the genomic rearrangements leading to those colonies support overlooked recombination hotspots, shared across great apes. The identified colonies deserve to be studied in mechanistic, evolutionary, and functional platforms.
Collapse
Affiliation(s)
- M Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - H Bayat
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Alizadeh S, Khamse S, Tajeddin N, Khorram Khorshid HR, Delbari A, Ohadi M. A GCC repeat in RAB26 undergoes natural selection in human and harbors divergent genotypes in late-onset Alzheimer's disease. Gene 2024; 893:147968. [PMID: 37931854 DOI: 10.1016/j.gene.2023.147968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Although mainly located in genic regions and being mutation hotspots, intact blocks of CG-rich trinucleotide short tandem repeats (STRs) are largely overlooked with respect to their link with natural selection. The human RAB26 (member RAS oncogene family) directs synaptic and secretory vesicles into preautophagosomal structures, inhibition of which specifically disrupts axonal transport of degradative organelles and leads to an axonal dystrophy, resembling Alzheimer's disease (AD). Human RAB26 contains a GCC repeat in the top 1st percent in respect of length. Here we sequenced this STR in 441 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 216) and controls (N = 225). In both groups, the 12-repeat allele and the 12/12 genotype were predominantly abundant. We found excess of homozygosity for non-12 alleles in the NCD group (Mid-P exact = 0.027). Furthermore, divergent genotypes were detected that were specific to the NCD group (2.8% of genotypes) (Mid-P exact = 0.006) or controls (3.1% of genotypes) (Mid-P exact = 0.004). The patients harboring divergent genotypes received the diagnosis of AD. Based on the predominant abundance of the 12-repeat and 12/12 genotype in both groups, excess of non-12 homozygosity in the NCD group, and divergent genotypes across the NCD and control groups, we propose natural selection at this locus and link with late-onset AD. Our findings strengthen the hypothesis that a collection of rare genotypes unambiguously contribute to the pathogenesis of late-onset NCDs, such as AD.
Collapse
Affiliation(s)
- S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Panoyan MA, Wendt FR. The role of tandem repeat expansions in brain disorders. Emerg Top Life Sci 2023; 7:249-263. [PMID: 37401564 DOI: 10.1042/etls20230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
The human genome contains numerous genetic polymorphisms contributing to different health and disease outcomes. Tandem repeat (TR) loci are highly polymorphic yet under-investigated in large genomic studies, which has prompted research efforts to identify novel variations and gain a deeper understanding of their role in human biology and disease outcomes. We summarize the current understanding of TRs and their implications for human health and disease, including an overview of the challenges encountered when conducting TR analyses and potential solutions to overcome these challenges. By shedding light on these issues, this article aims to contribute to a better understanding of the impact of TRs on the development of new disease treatments.
Collapse
Affiliation(s)
- Mary Anne Panoyan
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
7
|
Annear DJ, Vandeweyer G, Sanchis-Juan A, Raymond FL, Kooy RF. Non-Mendelian inheritance patterns and extreme deviation rates of CGG repeats in autism. Genome Res 2022; 32:1967-1980. [PMID: 36351771 PMCID: PMC9808627 DOI: 10.1101/gr.277011.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
As expansions of CGG short tandem repeats (STRs) are established as the genetic etiology of many neurodevelopmental disorders, we aimed to elucidate the inheritance patterns and role of CGG STRs in autism-spectrum disorder (ASD). By genotyping 6063 CGG STR loci in a large cohort of trios and quads with an ASD-affected proband, we determined an unprecedented rate of CGG repeat length deviation across a single generation. Although the concept of repeat length being linked to deviation rate was solidified, we show how shorter STRs display greater degrees of size variation. We observed that CGG STRs did not segregate by Mendelian principles but with a bias against longer repeats, which appeared to magnify as repeat length increased. Through logistic regression, we identified 19 genes that displayed significantly higher rates and degrees of CGG STR expansion within the ASD-affected probands (P < 1 × 10-5). This study not only highlights novel repeat expansions that may play a role in ASD but also reinforces the hypothesis that CGG STRs are specifically linked to human cognition.
Collapse
Affiliation(s)
- Dale J. Annear
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, CB2 0PT, United Kingdom
| | - F. Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom;,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2600 Antwerp, Belgium
| |
Collapse
|