1
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: a spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2024:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Betts JHJ, Troeberg L. Review: Mechanisms of TIMP-3 accumulation and pathogenesis in Sorsby fundus dystrophy. Mol Vis 2024; 30:74-91. [PMID: 38601018 PMCID: PMC11006011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Sorsby fundus dystrophy (SFD) is a rare, inherited form of macular degeneration caused by mutations in the gene encoding tissue inhibitor of metalloproteinases 3 (TIMP-3). There are 21 mutations currently associated with SFD, with some variants (e.g., Ser179Cys, Tyr191Cys, and Ser204Cys) having been studied much more than others. We review what is currently known about the identified SFD variants in terms of their dimerization, metalloproteinase inhibition, and impact on angiogenesis, with a focus on disparities between reports and areas requiring further study. We also explore the potential molecular mechanisms leading to the accumulation of extracellular TIMP-3 in SFD and consider how accumulated TIMP-3 causes macular damage. Recent reports have identified extraocular pathologies in a small number of SFD patients. We discuss these intriguing findings and consider the apparent discrepancy between the widespread expression of TIMP-3 and the primarily retinal manifestations of SFD. The potential benefits of novel experimental approaches (e.g., metabolomics and stem cell models) in terms of investigating SFD pathology are presented. The review thus highlights gaps in our current molecular understanding of SFD and suggests ways to support the development of novel therapies.
Collapse
Affiliation(s)
- Jacob H J Betts
- Norwich Medical School, University of East Anglia, Rosalind Franklin Road, Norwich, UK
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Rosalind Franklin Road, Norwich, UK
| |
Collapse
|
3
|
Williams BN, Draper A, Lang PF, Lewis TR, Smith AL, Mayerl SJ, Rougié M, Simon JM, Arshavsky VY, Greenwald SH, Gamm DM, Pinilla I, Philpot BD. Heterogeneity in the progression of retinal pathologies in mice harboring patient mimicking Impg2 mutations. Hum Mol Genet 2024; 33:448-464. [PMID: 37975905 PMCID: PMC10877459 DOI: 10.1093/hmg/ddad199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Brittany N Williams
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Adam Draper
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Patrick F Lang
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | - Audrey L Smith
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Steven J Mayerl
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Marie Rougié
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Jeremy M Simon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | | | - David M Gamm
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza 50009, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza 50009, Spain
| | - Benjamin D Philpot
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Ruggeri F, Ciancimino C, Guillot A, Fumi D, Tizio FD, Fragiotta S, Abdolrahimzadeh S. Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases. Curr Issues Mol Biol 2024; 46:1383-1397. [PMID: 38392207 PMCID: PMC10887594 DOI: 10.3390/cimb46020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Posterior polar annular choroidal dystrophy (PPACD) is a rare ocular disorder and presents as symmetric degeneration of the retinal pigment epithelium (RPE) and the underlying choriocapillaris, encircling the retinal vascular arcades and optic disc. This condition distinctively preserves the foveal region, optic disc, and the outermost regions of the retina. Despite its distinct clinical presentation, due to the infrequency of its occurrence and the limited number of reported cases, the pathophysiology, and the genetic foundations of PPACD are still largely uncharted. This review aims to bridge this knowledge gap by investigating potential genetic contributors to PPACD, assessing current findings, and identifying genes that warrant further study. Emphasis is also placed on the crucial role of multimodal imaging in diagnosing PPACD, highlighting its importance in understanding disease pathophysiology. By analyzing existing case reports and drawing comparisons with similar retinal disorders, this paper endeavors to delineate the possible genetic correlations in PPACD, providing a foundation for future genetic research and the development of targeted diagnostic strategies.
Collapse
Affiliation(s)
- Francesco Ruggeri
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, 00185 Roma, Italy
| | - Chiara Ciancimino
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, 00185 Roma, Italy
| | - Antonio Guillot
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, 00185 Roma, Italy
| | - Daniele Fumi
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, 00185 Roma, Italy
| | - Federico Di Tizio
- St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Serena Fragiotta
- UOC Ophthalmology, Department of Surgical Areas, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, 00185 Roma, Italy
- St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
5
|
Castellini ME, Spagnolli G, Poggi L, Biasini E, Casarosa S, Messina A. Identification of the zebrafish homologues of IMPG2, a retinal proteoglycan. Cell Tissue Res 2023; 394:93-105. [PMID: 37470839 PMCID: PMC10558372 DOI: 10.1007/s00441-023-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Photoreceptor outer segments are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix, necessary for physiological retinal function. Few roles for molecules characterizing the interphotoreceptor matrix have been clearly defined. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by retinal dystrophies. IMPG2 encodes for a proteoglycan synthesized by photoreceptors and secreted in the interphotoreceptor matrix. Little is known about the structure and function of this protein, we thus decided to characterize zebrafish impg2. In zebrafish there are two Impg2 proteins, Impg2a and Impg2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among vertebrates, showing a significant similarity between humans and teleosts. The human and zebrafish proteins share conserved domains, as also shown by homology models. Expression analyses of impg2a and impg2b show a continued expression in the photoreceptor layer starting from developmental stages and continuing through adulthood. Between 1 and 6 months post-fertilization, there is a significant shift of Impg2 expression toward the outer segment region, suggesting an increase in secretion. This raises intriguing hypotheses about its possible role(s) during retinal maturation, laying the groundwork for the generation of most needed models for the study of IMPG2-related inherited retinal dystrophies.
Collapse
Affiliation(s)
- M E Castellini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
| | - G Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Sibylla Biotech S.R.L, Piazzetta Chiavica 2 - 37121, Verona, VR, Italy
| | - L Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - E Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - S Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy.
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy.
| | - A Messina
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto, TN, Italy
| |
Collapse
|
6
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|