2
|
Zhao T, Wang S, Ouyang C, Chen M, Liu C, Zhang J, Yu L, Wang F, Xie Y, Li J, Wang F, Grunwald S, Wong BM, Zhang F, Qian Z, Xu Y, Yu C, Han W, Sun T, Shao Z, Qian T, Chen Z, Zeng J, Zhang H, Letu H, Zhang B, Wang L, Luo L, Shi C, Su H, Zhang H, Yin S, Huang N, Zhao W, Li N, Zheng C, Zhou Y, Huang C, Feng D, Xu Q, Wu Y, Hong D, Wang Z, Lin Y, Zhang T, Kumar P, Plaza A, Chanussot J, Zhang J, Shi J, Wang L. Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation (N Y) 2024; 5:100691. [PMID: 39285902 PMCID: PMC11404188 DOI: 10.1016/j.xinn.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
Collapse
Affiliation(s)
- Tianjie Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Sheng Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Chaojun Ouyang
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Chenying Liu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Long Yu
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fei Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xie
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Li
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, USA
| | - Bryan M Wong
- Materials Science Engineering Program Cooperating Faculty Member in the Department of Chemistry and Department of Physics Astronomy, University of California, California, Riverside, CA 92521, USA
| | - Fan Zhang
- Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhen Qian
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Yongjun Xu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqing Yu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Han
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Tao Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zezhi Shao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangwen Qian
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Chen
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangyuan Zeng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Huai Zhang
- Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Husi Letu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Bing Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Li Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lei Luo
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Chong Shi
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Hongjun Su
- College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
| | - Hongsheng Zhang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Shuai Yin
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Ni Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Wei Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Nan Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaolei Zheng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yang Zhou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Changping Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Defeng Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingsong Xu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danfeng Hong
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- Department of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06108, Germany
| | - Yinyi Lin
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Antonio Plaza
- Hyperspectral Computing Laboratory, University of Extremadura, 10003 Caceres, Spain
| | - Jocelyn Chanussot
- University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancheng Shi
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
3
|
Marcillat M, Van Audenhaege L, Borremans C, Arnaubec A, Menot L. The best of two worlds: reprojecting 2D image annotations onto 3D models. PeerJ 2024; 12:e17557. [PMID: 38952993 PMCID: PMC11216196 DOI: 10.7717/peerj.17557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Imagery has become one of the main data sources for investigating seascape spatial patterns. This is particularly true in deep-sea environments, which are only accessible with underwater vehicles. On the one hand, using collaborative web-based tools and machine learning algorithms, biological and geological features can now be massively annotated on 2D images with the support of experts. On the other hand, geomorphometrics such as slope or rugosity derived from 3D models built with structure from motion (sfm) methodology can then be used to answer spatial distribution questions. However, precise georeferencing of 2D annotations on 3D models has proven challenging for deep-sea images, due to a large mismatch between navigation obtained from underwater vehicles and the reprojected navigation computed in the process of building 3D models. In addition, although 3D models can be directly annotated, the process becomes challenging due to the low resolution of textures and the large size of the models. In this article, we propose a streamlined, open-access processing pipeline to reproject 2D image annotations onto 3D models using ray tracing. Using four underwater image datasets, we assessed the accuracy of annotation reprojection on 3D models and achieved successful georeferencing to centimetric accuracy. The combination of photogrammetric 3D models and accurate 2D annotations would allow the construction of a 3D representation of the landscape and could provide new insights into understanding species microdistribution and biotic interactions.
Collapse
Affiliation(s)
- Marin Marcillat
- BEEP/LEP, Institut Français de Recherche pour l’Exploitation de la Mer, Plouzane, Bretagne, France
| | - Loic Van Audenhaege
- BEEP/LEP, Institut Français de Recherche pour l’Exploitation de la Mer, Plouzane, Bretagne, France
- Ocean Bio Geosciences, The National Oceanography Centre, Southampton, United Kingdom
| | - Catherine Borremans
- BEEP/LEP, Institut Français de Recherche pour l’Exploitation de la Mer, Plouzane, Bretagne, France
| | - Aurélien Arnaubec
- PRAO, Institut Français de Recherche pour l’Exploitation de la Mer, Toulon, Provence-Alpes-Côte d’Azur, France
| | - Lenaick Menot
- BEEP/LEP, Institut Français de Recherche pour l’Exploitation de la Mer, Plouzane, Bretagne, France
| |
Collapse
|
4
|
Burns JA, Becker KP, Casagrande D, Daniels J, Roberts P, Orenstein E, Vogt DM, Teoh ZE, Wood R, Yin AH, Genot B, Gruber DF, Katija K, Wood RJ, Phillips BT. An in situ digital synthesis strategy for the discovery and description of ocean life. SCIENCE ADVANCES 2024; 10:eadj4960. [PMID: 38232174 PMCID: PMC10793947 DOI: 10.1126/sciadv.adj4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.
Collapse
Affiliation(s)
- John A. Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Kaitlyn P. Becker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David Casagrande
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Joost Daniels
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Paul Roberts
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Eric Orenstein
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Daniel M. Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Ryan Wood
- PA Consulting, Concord, MA 01742, USA
| | - Alexander H. Yin
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Baptiste Genot
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - David F. Gruber
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY 10010, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Robert J. Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Brennan T. Phillips
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| |
Collapse
|