1
|
Roye Y, Miller C, Kalejaiye TD, Musah S. A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury. Matrix Biol Plus 2024; 24:100164. [PMID: 39582511 PMCID: PMC11585791 DOI: 10.1016/j.mbplus.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Carmen Miller
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham NC, USA
| | - Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
- MEDx Investigator, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
3
|
Hu J, Teng J, Hui S, Liang L. SGLT-2 inhibitors as novel treatments of multiple organ fibrosis. Heliyon 2024; 10:e29486. [PMID: 38644817 PMCID: PMC11031788 DOI: 10.1016/j.heliyon.2024.e29486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs and can lead to serious damage and loss of function. Despite the availability of some treatments, their limitations necessitate the development of new therapeutic options. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown promise in offering protective effects against fibrosis in multiple organs through glucose-independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across different tissues, providing insights into their underlying mechanisms and highlighting recent research advancements. The evidence positions SGLT2i as a potential future treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Junpei Hu
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Jianhui Teng
- Department of Geriatrics, Hunan Provincial People's Hospital, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| |
Collapse
|
4
|
Zeng XC, Tian Y, Liang XM, Wu XB, Yao CM, Chen XM. SGLT2i relieve proteinuria in diabetic nephropathy patients potentially by inhibiting renal oxidative stress rather than through AGEs pathway. Diabetol Metab Syndr 2024; 16:46. [PMID: 38365853 PMCID: PMC10870536 DOI: 10.1186/s13098-024-01280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
AIMS To estimate the effects of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) on proteinuria and oxidative stress expression in type 2 diabetes patients. MATERIALS AND METHODS 68 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according urinary albumin-to-creatinine ratio (UACR), including T2DM with non-albuminuria group (UACR < 30 mg/g), T2DM with microalbuminuria group (30 ≤ UACR ≤ 300 mg/g), T2DM with macroalbuminuria group (UACR>300 mg/g). They all received SGLT2 inhibitors (SGLT2i) treatment for 12 weeks. The expression of advanced glycation end products (AGEs) in plasma and 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine were measured as indications of oxidative stress. The 24-hour urine samples were collected to measure the concentration of proteinuria and 8-OHdG before and after 12 weeks SGLT2i treatment. Plasma renin activity (PRA), angiotensin II (Ang II) and Aldosterone (ALD) were measured to evaluate renin angiotensin aldosterone system (RASS) levels. RESULTS After 12 weeks SGLT2 inhibitors treatment, the median values of 24-hour proteinuria decreased in macroalbuminuria compared to baseline (970 vs. 821 mg/d, P = 0.006). The median values of AGEs and 8-OHdG decreased in microalbuminuria and macroalbuminuria groups when compared to baseline, AGEs (777 vs. 136 ug/ml, P = 0.003) and (755 vs. 210 ug/ml, P = 0.001), 8-OHdG (8.00 vs. 1.88 ng/ml, P = 0.001) and (11.18 vs. 1.90 ng/ml, P < 0.001), respectively. Partial correlations showed that 8-OHdG were relevant to the baseline 24-h proteinuria (r = 0.389, p = 0.001), the reduction of OHdG (Δ8-OHdG) were positively correlated with the decrease of 24-h proteinuria (Δ24-h proteinuria) after 12 weeks of SGLT2i treatment (r = 0.283, P = 0.031). There was no significant correlation between 24-h proteinuria and AGEs in baseline (r = -0.059, p = 0.640) as well as between ΔAGEs and Δ24-h proteinuria (r = 0.022, p = 0.872) after12 weeks of SGLT2i treatment in T2DM patients. CONCLUSIONS SGLT2i may reduce proteinuria in diabetic nephropathy patients, potentially by inhibiting renal oxidative stress, but not through the AGEs pathway and does not induce RAAS activation. TRIAL REGISTRATION This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.
Collapse
Affiliation(s)
- Xiao-Chun Zeng
- Department of Endocrinology and Metabolism, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P.R. China
- The School of Clinical Medicine, Fujian Medical University, 350004, Fuzhou, P.R. China
| | - Yuan Tian
- Department of Endocrinology and Metabolism, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P.R. China
| | - Xian-Ming Liang
- Center of Clinical Laboratory, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P. R. China
| | - Xiao-Bin Wu
- Department of Endocrinology and Metabolism, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P.R. China
| | - Chun-Meng Yao
- Department of Nephrology, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P. R. China
| | - Xiao-Min Chen
- Department of Endocrinology and Metabolism, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 201-209 Hubin South Road, 361004, Xiamen, P.R. China.
- The School of Clinical Medicine, Fujian Medical University, 350004, Fuzhou, P.R. China.
| |
Collapse
|
5
|
Fages V, Jannin A, Maanaoui M, Glowacki F, Do Cao C. Proteinuria reduction with SGLT2 inhibitors in a patient treated with tyrosine kinase inhibitor lenvatinib. J Nephrol 2024; 37:187-189. [PMID: 37418091 DOI: 10.1007/s40620-023-01701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
We describe the case of a 66-year-old woman treated with tyrosine kinase inhibitor Lenvatinib for thyroid carcinoma who had persistent proteinuria above 2 g/24 h despite maximal dose of angiotensin-converting enzyme inhibitor. We initiated a treatment with SGLT2 inhibitor Dapagliflozin. Three months after Dapagliflozin initiation, her proteinuria decreased to 1 g/24 h, and after 6 months of follow-up was 0.6 g/24 h. To our knowledge, this is the first case of successful proteinuria reduction with SGLT2i in a patient treated with Lenvatinib. Specific renal effects of SGLT2i seem promising and their effects on tyrosine kinase inhibitor renal adverse effects need to be validated in clinical trials involving cancer patients.
Collapse
Affiliation(s)
- Victor Fages
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France.
| | - Arnaud Jannin
- Department of Diabetology, Endocrinology, Metabolism and Nutrition, Centre Hospitalier Regional Universitaire de Lille, Lille University Hospital, Lille, France
| | - Mehdi Maanaoui
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France
| | - François Glowacki
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France
| | - Christine Do Cao
- Department of Diabetology, Endocrinology, Metabolism and Nutrition, Centre Hospitalier Regional Universitaire de Lille, Lille University Hospital, Lille, France
| |
Collapse
|
6
|
Gong M, Guo Y, Dong H, Wu W, Wu F, Lu F. Trigonelline inhibits tubular epithelial-mesenchymal transformation in diabetic kidney disease via targeting Smad7. Biomed Pharmacother 2023; 168:115747. [PMID: 37864898 DOI: 10.1016/j.biopha.2023.115747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
OBJECTIVES Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes. Inhibiting the epithelial-mesenchymal transition (EMT) of proximal tubule epithelial cells (PTCs) can slow down renal fibrosis. Trigonelline (TRL), an alkaloid isolated from the fenugreek, has demonstrated therapeutic effects on diabetes and its complications. Nevertheless, the underlying mechanisms for the effects of TRL are still obscure. The present study was aimed to evaluate the treatment of TRL against DKD and explore the potential mechanisms. METHODS The db/db mice were used as a spontaneous model of DKD and TRL solution was administered by daily gavage for 8 weeks. Indicators associated with glucose metabolism, renal function and urinary albumin were tested. Renal fibrosis in diabetic mice was evaluated by histopathological staining. Kidney transcriptomics was performed after confirming therapeutic effects of TRL on DKD mice. Molecular biology techniques and in vitro experiments were utilized for final mechanism verification. RESULTS Biochemical tests revealed that TRL ameliorated renal damage and reduced microalbuminuria in DKD mice. TRL exhibited a protective effect on PTCs, effectively mitigating tubular EMT and renal fibrosis in diabetic kidneys. Transcriptomics analysis indicated that TRL may target Smad7, an inhibitor of TGF-β1 signaling, to alleviate fibrosis. Furthermore, in vitro experiments validated that silencing Smad7 abolished the therapeutic effect of TRL. CONCLUSION Our findings indicate that TRL can alleviate tubular epithelial-mesenchymal transition and renal fibrosis in db/db mice by upregulating Smad7 in PTCs, suggesting that TRL is a promising medicine against DKD.
Collapse
Affiliation(s)
- Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Suryantoro SD, Thaha M, Sutanto H, Firdausa S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J Clin Med 2023; 12:4401. [PMID: 37445436 DOI: 10.3390/jcm12134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peritoneal fibrosis is the final process of progressive changes in the peritoneal membrane due to chronic inflammation and infection. It is one of the main causes of discontinuation of peritoneal dialysis (PD), apart from peritonitis and cardiovascular complications. Over time, morphological changes occur in the peritoneal membranes of patients who use PD. Of those are mesothelial-to-mesenchymal transition (MMT), neoangiogenesis, sub-mesothelial fibrosis, and hyalinizing vasculopathy. Several key molecules are involved in the complex pathophysiology of peritoneal fibrosis, including advanced glycosylation end products (AGEs), transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF). This narrative review will first discuss the physiology of the peritoneum and PD. Next, the multifaceted pathophysiology of peritoneal fibrosis, including the effects of hyperglycemia and diabetes mellitus on the peritoneal membrane, and the promising biomarkers of peritoneal fibrosis will be reviewed. Finally, the current and future management of peritoneal fibrosis will be discussed, including the potential benefits of new-generation glucose-lowering medications to prevent or slow down the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Satriyo Dwi Suryantoro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Mochammad Thaha
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Sarah Firdausa
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|