Bootsma MCJ, Chan KMD, Diekmann O, Inaba H. Separable mixing: The general formulation and a particular example focusing on mask efficiency.
MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023;
20:17661-17671. [PMID:
38052531 DOI:
10.3934/mbe.2023785]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The aim of this short note is twofold. First, we formulate the general Kermack-McKendrick epidemic model incorporating static heterogeneity and show how it simplifies to a scalar Renewal Equation (RE) when separable mixing is assumed. A key general feature is that all information about the heterogeneity is encoded in one nonlinear real valued function of a real variable. Next, we specialize the model ingredients so that we can study the efficiency of mask wearing as a non-pharmaceutical intervention to reduce the spread of an infectious disease. Our main result affirms that the best way to protect the population as a whole is to protect yourself. This qualitative insight was recently derived in the context of an SIR network model. Here, we extend the conclusion to proportionate mixing models incorporating a general function describing expected infectiousness as a function of time since infection.
Collapse