1
|
Voolstra CR, Alderdice R, Colin L, Staab S, Apprill A, Raina JB. Standardized Methods to Assess the Impacts of Thermal Stress on Coral Reef Marine Life. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:193-226. [PMID: 39116436 DOI: 10.1146/annurev-marine-032223-024511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The Earth's oceans have absorbed more than 90% of the excess, climate change-induced atmospheric heat. The resulting rise in oceanic temperatures affects all species and can lead to the collapse of marine ecosystems, including coral reefs. Here, we review the range of methods used to measure thermal stress impacts on reef-building corals, highlighting current standardization practices and necessary refinements to fast-track discoveries and improve interstudy comparisons. We also present technological developments that will undoubtedly enhance our ability to record and analyze standardized data. Although we use corals as an example, the methods described are widely employed in marine sciences, and our recommendations therefore apply to all species and ecosystems. Enhancing collaborative data collection efforts, implementing field-wide standardized protocols, and ensuring data availability through dedicated, openly accessible databases will enable large-scale analysis and monitoring of ecosystem changes, improving our predictive capacities and informing active intervention to mitigate climate change effects on marine life.
Collapse
Affiliation(s)
| | - Rachel Alderdice
- Department of Biology, University of Konstanz, Konstanz, Germany;
| | - Luigi Colin
- Department of Biology, University of Konstanz, Konstanz, Germany;
| | - Sebastian Staab
- Department of Biology, University of Konstanz, Konstanz, Germany;
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia;
| |
Collapse
|
2
|
Lin S, Li L, Zhou Z, Yuan H, Saad OS, Tang J, Cai W, Yu K, Lin S. Higher genotypic diversity and distinct assembly mechanism of free-living Symbiodiniaceae assemblages than sympatric coral-endosymbiotic assemblages in a tropical coral reef. Microbiol Spectr 2024; 12:e0051424. [PMID: 38874391 PMCID: PMC11302235 DOI: 10.1128/spectrum.00514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
While in hospite Symbiodiniaceae dinoflagellates are essential for coral health, ambient free-living counterparts are crucial for coral recruitment and resilience. Comparing free-living and in hospite Symbiodiniaceae communities can potentially provide insights into endosymbiont acquisition and recurrent recruitment in bleaching recovery. In this study, we studied coral-endosymbiotic and ambient free-living Symbiodiniaceae communities in the South China Sea. We collected samples from 183 coral and ambient plankton samples and conducted metabarcoding to investigate the diversity distribution, driving factors, and assembly mechanisms of the two groups of Symbiodiniaceae. Results revealed Cladocopium C1 and Durusdinium D1 as dominant genotypes. We detected a higher genotypic diversity in free-living than in hospite symbiodiniacean communities, but with shared dominant genotypes. This indicates a genetically diverse pool of Symbiodiniaceae available for recruitment by corals. Strikingly, we found that the cooler area had more Symbiodiniaceae thermosensitive genotypes, whereas the warmer area had more Symbiodiniaceae thermotolerant genotypes. Furthermore, in hospite and free-living Symbiodiniaceae communities were similarly affected by environmental factors, but shaped by different assembly mechanisms. The in hospite communities were controlled mainly by deterministic processes, whereas the ambient communities by stochastic processes. This study sheds light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms influencing Symbiodiniaceae inside and outside corals.IMPORTANCESymbiodiniaceae dinoflagellates play a pivotal role as key primary producers within coral reef ecosystems. Coral-endosymbiotic Symbiodiniaceae communities have been extensively studied, but relatively little work has been reported on the free-living Symbiodiniaceae community. Conducting a comparative analysis between sympatric coral-endosymbiotic and free-living Symbiodiniaceae communities can potentially enhance the understanding of how endosymbiont communities change in response to changing environments and the mechanisms driving these changes. Our findings shed light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms shaping free-living and in hospite Symbiodiniaceae communities, with implications in evaluating the adaptive and resilient capacity of corals in response to future climate change.
Collapse
Affiliation(s)
- Sitong Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Osama S. Saad
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jia Tang
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Wenqi Cai
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
3
|
Poquita-Du RC, Huang D, Todd PA. Genome-wide analysis to uncover how Pocillopora acuta survives the challenging intertidal environment. Sci Rep 2024; 14:8538. [PMID: 38609456 PMCID: PMC11015029 DOI: 10.1038/s41598-024-59268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.
Collapse
Affiliation(s)
- Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Danwei Huang
- Lee Kong Chian Natural History Museum and Tropical Marine Science Institute, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
4
|
Dilernia NJ, Woodcock S, Camp EF, Hughes DJ, Kühl M, Suggett DJ. Intra-colony spatial variance of oxyregulation and hypoxic thresholds for key Acropora coral species. Ecol Evol 2024; 14:e11100. [PMID: 38444722 PMCID: PMC10914553 DOI: 10.1002/ece3.11100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Oxygen (O2) availability is essential for healthy coral reef functioning, yet how continued loss of dissolved O2 via ocean deoxygenation impacts performance of reef building corals remains unclear. Here, we examine how intra-colony spatial geometry of important Great Barrier Reef (GBR) coral species Acropora may influence variation in hypoxic thresholds for upregulation, to better understand capacity to tolerate future reductions in O2 availability. We first evaluate the application of more streamlined models used to parameterise Hypoxia Response Curve data, models that have been used historically to identify variable oxyregulatory capacity. Using closed-system respirometry to analyse O2 drawdown rate, we show that a two-parameter model returns similar outputs as previous 12th-order models for descriptive statistics such as the average oxyregulation capacity (Tpos) and the ambient O2 level at which the coral exerts maximum regulation effort (Pcmax), for diverse Acropora species. Following an experiment to evaluate whether stress induced by coral fragmentation for respirometry affected O2 drawdown rate, we subsequently identify differences in hypoxic response for the interior and exterior colony locations for the species Acropora abrotanoides, Acropora cf. microphthalma and Acropora elseyi. Average regulation capacity across species was greater (0.78-1.03 ± SE 0.08) at the colony interior compared with exterior (0.60-0.85 ± SE 0.08). Moreover, Pcmax occurred at relatively low pO2 of <30% (±1.24; SE) air saturation for all species, across the colony. When compared against ambient O2 availability, these factors corresponded to differences in mean intra-colony oxyregulation, suggesting that lower variation in dissolved O2 corresponds with higher capacity for oxyregulation. Collectively, our data show that intra-colony spatial variation affects coral oxyregulation hypoxic thresholds, potentially driving differences in Acropora oxyregulatory capacity.
Collapse
Affiliation(s)
- Nicole J. Dilernia
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - Stephen Woodcock
- School of Mathematical and Physical SciencesUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - Emma F. Camp
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - David J. Hughes
- National Sea SimulatorAustralian Institute of Marine Science (AIMS)TownsvilleQueenslandAustralia
| | - Michael Kühl
- Department of Biology, Marine Biological SectionUniversity of CopenhagenHelsingørDenmark
| | - David J. Suggett
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC)King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
5
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
6
|
Ashey J, McKelvie H, Freeman J, Shpilker P, Zane LH, Becker DM, Cowen L, Richmond RH, Paul VJ, Seneca FO, Putnam HM. Characterizing transcriptomic responses to sediment stress across location and morphology in reef-building corals. PeerJ 2024; 12:e16654. [PMID: 38313033 PMCID: PMC10836209 DOI: 10.7717/peerj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/20/2023] [Indexed: 02/06/2024] Open
Abstract
Anthropogenic activities increase sediment suspended in the water column and deposition on reefs can be largely dependent on colony morphology. Massive and plating corals have a high capacity to trap sediments, and active removal mechanisms can be energetically costly. Branching corals trap less sediment but are more susceptible to light limitation caused by suspended sediment. Despite deleterious effects of sediments on corals, few studies have examined the molecular response of corals with different morphological characteristics to sediment stress. To address this knowledge gap, this study assessed the transcriptomic responses of branching and massive corals in Florida and Hawai'i to varying levels of sediment exposure. Gene expression analysis revealed a molecular responsiveness to sediments across species and sites. Differential Gene Expression followed by Gene Ontology (GO) enrichment analysis identified that branching corals had the largest transcriptomic response to sediments, in developmental processes and metabolism, while significantly enriched GO terms were highly variable between massive corals, despite similar morphologies. Comparison of DEGs within orthogroups revealed that while all corals had DEGs in response to sediment, there was not a concerted gene set response by morphology or location. These findings illuminate the species specificity and genetic basis underlying coral susceptibility to sediments.
Collapse
Affiliation(s)
- Jill Ashey
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Hailey McKelvie
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - John Freeman
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Polina Shpilker
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Lauren H. Zane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Danielle M. Becker
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Robert H. Richmond
- Kewalo Marine Lab, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Smithsonian, Fort Pierce, Florida, United States
| | | | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| |
Collapse
|
7
|
Denis H, Bay LK, Mocellin VJL, Naugle MS, Lecellier G, Purcell SW, Berteaux-Lecellier V, Howells EJ. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc Biol Sci 2024; 291:20240587. [PMID: 39257340 PMCID: PMC11463214 DOI: 10.1098/rspb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- ED 129, Sorbonne Université, 4, Place Jussieu, Paris75252, France
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Melissa S. Naugle
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- Institut de Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, NouméaBP R4 98 851, New Caledonia
| | - Steven W. Purcell
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Emily J. Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|