1
|
Peter R, Bidkar AP, Bobba KN, Zerefa L, Dasari C, Meher N, Wadhwa A, Oskowitz A, Liu B, Miller BW, Vetter K, Flavell RR, Seo Y. 3D small-scale dosimetry and tumor control of 225Ac radiopharmaceuticals for prostate cancer. Sci Rep 2024; 14:19938. [PMID: 39198676 PMCID: PMC11358493 DOI: 10.1038/s41598-024-70417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Radiopharmaceutical therapy using α -emitting225 Ac is an emerging treatment for patients with advanced metastatic cancers. Measurement of the spatial dose distribution in organs and tumors is needed to inform treatment dose prescription and reduce off-target toxicity, at not only organ but also sub-organ scales. Digital autoradiography with α -sensitive detection devices can measure radioactivity distributions at 20-40 μ m resolution, but anatomical characterization is typically limited to 2D. We collected digital autoradiographs across whole tissues to generate 3D dose volumes and used them to evaluate the simultaneous tumor control and regional kidney dosimetry of a novel therapeutic radiopharmaceutical for prostate cancer, [225Ac]Ac-Macropa-PEG4-YS5, in mice. 22Rv1 xenograft-bearing mice treated with 18.5 kBq of [225Ac]Ac-Macropa-PEG4-YS5 were sacrificed at 24 h and 168 h post-injection for quantitative α -particle digital autoradiography and hematoxylin and eosin staining. Gamma-ray spectroscopy of biodistribution data was used to determine temporal dynamics and213 Bi redistribution. Tumor control probability and sub-kidney dosimetry were assessed. Heterogeneous225 Ac spatial distribution was observed in both tumors and kidneys. Tumor control was maintained despite heterogeneity if cold spots coincided with necrotic regions.225 Ac dose-rate was highest in the cortex and renal vasculature. Extrapolation of tumor control suggested that kidney absorbed dose could be reduced by 41% while maintaining 90% TCP. The 3D dosimetry methods described allow for whole tumor and organ dose measurements following225 Ac radiopharmaceutical therapy, which correlate to tumor control and toxicity outcomes.
Collapse
Affiliation(s)
- Robin Peter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Adam Oskowitz
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Brian W Miller
- Departments of Radiation Oncology and Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Kai Vetter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| | - Youngho Seo
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Caravaca J, Bobba KN, Du S, Peter R, Gullberg GT, Bidkar AP, Flavell RR, Seo Y. A Technique to Quantify Very Low Activities in Regions of Interest With a Collimatorless Detector. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2745-2757. [PMID: 38478457 PMCID: PMC11293990 DOI: 10.1109/tmi.2024.3377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We present a new method to measure sub-microcurie activities of photon-emitting radionuclides in organs and lesions of small animals in vivo. Our technique, named the collimator-less likelihood fit, combines a very high sensitivity collimatorless detector with a Monte Carlo-based likelihood fit in order to estimate the activities in previously segmented regions of interest along with their uncertainties. This is done directly from the photon projections in our collimatorless detector and from the region of interest segmentation provided by an x-ray computed tomography scan. We have extensively validated our approach with 225Ac experimentally in spherical phantoms and mouse phantoms, and also numerically with simulations of a realistic mouse anatomy. Our method yields statistically unbiased results with uncertainties smaller than 20% for activities as low as ~111Bq (3nCi) and for exposures under 30 minutes. We demonstrate that our method yields more robust recovery coefficients when compared to SPECT imaging with a commercial pre-clinical scanner, specially at very low activities. Thus, our technique is complementary to traditional SPECT/CT imaging since it provides a more accurate and precise organ and tumor dosimetry, with a more limited spatial information. Finally, our technique is specially significant in extremely low-activity scenarios when SPECT/CT imaging is simply not viable.
Collapse
|
3
|
Takashima ME, Berg TJ, Morris ZS. The Effects of Radiation Dose Heterogeneity on the Tumor Microenvironment and Anti-Tumor Immunity. Semin Radiat Oncol 2024; 34:262-271. [PMID: 38880534 DOI: 10.1016/j.semradonc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Radiotherapy elicits dose- and lineage-dependent effects on immune cell survival, migration, activation, and proliferation in targeted tumor microenvironments. Radiation also stimulates phenotypic changes that modulate the immune susceptibility of tumor cells. This has raised interest in using radiotherapy to promote greater response to immunotherapies. To clarify the potential of such combinations, it is critical to understand how best to administer radiation therapy to achieve activation of desired immunologic mechanisms. In considering the multifaceted process of priming and propagating anti-tumor immune response, radiation dose heterogeneity emerges as a potential means for simultaneously engaging diverse dose-dependent effects in a single tumor environment. Recent work in spatially fractionated external beam radiation therapy demonstrates the expansive immune responses achievable when a range of high to low dose radiation is delivered in a tumor. Brachytherapy and radiopharmaceutical therapies deliver inherently heterogeneous distributions of radiation that may contribute to immunogenicity. This review evaluates the interplay of radiation dose and anti-tumor immune response and explores emerging methodological approaches for investigating the effects of heterogeneous dose distribution on immune responses.
Collapse
Affiliation(s)
- Maya E Takashima
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
4
|
White AJ, Jollota SP, Hammer CG, Khan AU, DeWerd LA, Culberson WS. Thermoluminescent dosimeters (TLD-100) for absorbed dose measurements in alpha-emitting radionuclides. Appl Radiat Isot 2024; 208:111307. [PMID: 38564840 DOI: 10.1016/j.apradiso.2024.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.
Collapse
Affiliation(s)
- Andrew J White
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Sean P Jollota
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Cliff G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Ahtesham U Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Radiation Oncology, Northwestern Memorial Hospital, 250 E. Huron St, Chicago, IL, 60611, USA
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
5
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
6
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Yamamoto S, Yoshino M, Nakanishi K, Yogo K, Kamada K, Yoshikawa A, Kataoka J. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging. Appl Radiat Isot 2024; 204:111143. [PMID: 38101006 DOI: 10.1016/j.apradiso.2023.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
High-resolution and real-time imaging of particle ion trajectories is essential in nuclear medicine and nuclear engineering. One potential method to achieve high-resolution real-time trajectory imaging of particle ions involves utilizing an imaging system that integrates a scintillator plate with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera. However, acquiring an EM-CCD camera might prove challenging due to the discontinuation of CCD sensor manufacturing by vendors. As an alternative imaging approach, a low-noise, high-sensitivity camera utilizing a cooled complementary metal-oxide-semiconductor (CMOS) sensor offers a promising solution for imaging particle ion trajectories. Yet, it remains uncertain whether CMOS-based cameras can perform as effectively as CCD-based cameras in capturing particle ion trajectories. To address these concerns, we conducted a comparative analysis of the imaging performance between a CMOS-based system and an EM-CCD-based system for capturing alpha particle trajectories. The results revealed that both systems could image the trajectories of alpha particle, but the spatial resolution with the CMOS-based camera exceeded that of the EM-CCD-based camera, primarily due to the smaller pixel size of the sensor. While the signal-to-noise ratio (SNR) of the trajectory image from the CMOS-based camera initially lagged behind that from the EM-CCD-based camera, this disparity was mitigated by implementing binning techniques on the CMOS-based camera images. In conclusion, our findings suggest that a cooled CMOS camera could serve as a viable alternative for imaging particle ion trajectories.
Collapse
Affiliation(s)
| | - Masao Yoshino
- New Industry Creation Hatchery Center, Tohoku University, Japan
| | | | | | - Kei Kamada
- New Industry Creation Hatchery Center, Tohoku University, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center, Tohoku University, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Japan
| |
Collapse
|
8
|
Yamamoto S, Yoshino M, Kamada K, Yajima R, Yoshikawa A, Nakanishi K, Kataoka J. Development of an ultrahigh resolution real time alpha particle imaging system for observing the trajectories of alpha particles in a scintillator. Sci Rep 2023; 13:4955. [PMID: 37100780 PMCID: PMC10133294 DOI: 10.1038/s41598-023-31748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/28/2023] Open
Abstract
High-resolution imaging of alpha particles is required in the detection of alpha radionuclides in cells or small organs for the development of radio-compounds for targeted alpha-particle therapy or other purposes. We developed an ultrahigh resolution, real time alpha-particle imaging system for observing the trajectories of alpha particles in a scintillator. The developed system is based on a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera, combined with a 100-µm-thick Ce-doped Gd3Al2Ga3O12 (GAGG) scintillator plate. Alpha particles from an Am-241 source were irradiated to the GAGG scintillator and imaged with the system. Using our system, we measured the trajectories of the alpha particles having different shapes in real time. In some of these measured trajectories, the line shapes of the alpha particles that flew in the GAGG scintillator were clearly observed. The lateral profiles of the alpha-particle trajectories were imaged with widths of ~ 2 µm. We conclude that the developed imaging system is promising for research on targeted alpha-particle therapy or other alpha particle detections that require high spatial resolution.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
| | - Masao Yoshino
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- C&A Corporation, Sendai, Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- C&A Corporation, Sendai, Japan
| | - Ryuga Yajima
- Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Akira Yoshikawa
- C&A Corporation, Sendai, Japan
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Kohei Nakanishi
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|