1
|
Zhang W, Zhang K, Feng Y, Zhang G. Global research trends in traditional Chinese medicine therapy for acute leukemia: a comprehensive visualization and bibliometric analysis. Hematology 2024; 29:2427896. [PMID: 39530384 DOI: 10.1080/16078454.2024.2427896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The application of traditional Chinese medicine (TCM) therapy to acute leukemia has been intensively investigated. However, the bibliometric analysis in this field has not been performed. This bibliometric study aimed to comprehensively analyze the research trends and active areas of TCM therapy for acute leukemia from 2000 to 2023. METHODS We searched articles and reviews published between 2000 and 2023 that discussed TCM in acute leukemia from the Web of Science Core Collection (WoSCC). Knowledge mapping and bibliometric analysis were conducted using VOSviewer, CiteSpace software, and R-bibliometrix. RESULTS A total of 1,099 articles were included, with China, the United States, and Korea contributing the most papers. Most papers were published in the Journal of Ethnopharmacology. Meanwhile, China saw a steady increase in the number of publications. The three leading institutions that made outstanding contributions were the China Medical University, the Chinese Academy of Sciences, and the China Academy of Chinese Medical Sciences. Efferth Thomas, Liu Wei, and Liu Jie were the top three productive authors, with Efferth T receiving the most co-citations. The most frequently cited reference was Shen ZX (1997). In the analysis of keywords co-occurrence, 'survival,' 'risk factors,' 'nanoparticles,' and 'metabolism' are the active research topics. CONCLUSION This bibliometric study provides researchers with a comprehensive overview and significant value in understanding the development of TCM in acute leukemia treatment.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department Electrophysiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Kaili Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guangxi, People's Republic of China
| | - Yuqing Feng
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Gaofeng Zhang
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| |
Collapse
|
2
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Cholujova D, Bujnakova ZL, Dutkova E, Valuskova Z, Csicsatkova N, Suroviakova K, Marinkovicova ME, Zbellova L, Koklesova L, Sedlak J, Hideshima T, Anderson KC, Jakubikova J. Exploring the anti-myeloma potential of composite nanoparticles As 4S 4/Fe 3O 4: Insights from in vitro, ex vivo and in vivo studies. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102777. [PMID: 39111377 DOI: 10.1016/j.nano.2024.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As4S4/Fe3O4 (4:1) and As4S4/Fe3O4 (1:1) demonstrated effective anti-MM activity in in vitro, ex vivo, and in vivo in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G2/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As4S4/Fe3O4 (4:1) observed synergism with dexamethasone and melphalan, while As4S4/Fe3O4 (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Zdenka Lukacova Bujnakova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Erika Dutkova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Zuzana Valuskova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Nikoleta Csicsatkova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Katarina Suroviakova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Maria Elisabeth Marinkovicova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Linda Zbellova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Koklesova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Sedlak
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Teru Hideshima
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C Anderson
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia.
| |
Collapse
|
4
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
6
|
Wang Q, Yang Y, Li P, Dong R, Sun C, Song G, Wang Y. Titanium dioxide nanoparticles induce apoptosis through ROS-Ca 2+-p38/AKT/mTOR pathway in TM4 cells. J Appl Toxicol 2024; 44:818-832. [PMID: 38272789 DOI: 10.1002/jat.4583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can cause apoptosis in TM4 cells; however, the underlying mechanism has not been entirely elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on ROS, Ca2+ level, p38/AKT/mTOR pathway, and apoptosis in TM4 cells and to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. After exposure to different concentrations (0, 50, 100, 150, and 200 μg/mL) of TiO2 NPs for 24 h, cell viability, ROS, Ca2+ level, Ca2+-ATPase activity, p38/AKT/mTOR pathway-related proteins, apoptosis rate, and apoptosis-related proteins (Bax, Bcl-2, Caspase 3, Caspase 9, and p53) were detected. The ROS scavenger NAC was used to determine the effect of ROS on Ca2+ level. The Ca2+ chelator BAPTA-AM was used to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. TiO2 NPs significantly inhibited cell viability, increased ROS level, and elevated Ca2+ level while suppressing Ca2+-ATPase activity. TiO2 NPs regulated the p38/AKT/mTOR pathway via increasing p-p38 level and decreasing p-AKT and p-mTOR levels. TiO2 NPs significantly enhanced the apoptosis. NAC attenuated Ca2+ overload and reduction in Ca2+-ATPase activity caused by TiO2 NPs. BAPTA-AM alleviated TiO2 NPs-induced abnormal expression of p38/AKT/mTOR pathway-related proteins. BAPTA-AM assuaged the apoptosis caused by TiO2 NPs. Altogether, this study revealed that TiO2 NPs elevated intracellular Ca2+ level through ROS accumulation. Subsequently, the heightened intracellular Ca2+ level was observed to exert regulation over the p38/AKT/mTOR pathway, ultimately culminating in apoptosis. These results provides a complementary understanding to the mechanism of TiO2 NPs-induced apoptosis in TM4 cells.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | | | - Pengfei Li
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Chenhao Sun
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Yao H, Cheng L, Chen D, Zhang Q, Qiu L, Ren SH, Dou BT, Wang H, Huang J, Fan FY. Role of the bone marrow microenvironment in multiple myeloma treatment using CAR-T therapy. Expert Rev Anticancer Ther 2023; 23:807-815. [PMID: 37343305 DOI: 10.1080/14737140.2023.2229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant tumor caused by abnormal proliferation of bone marrow (BM) plasma cells and is the second most common hematologic malignancy. A variety of CAR-T cells targeting multiple myeloma-specific markers have shown good efficacy in clinical trials. However, CAR-T therapy still limits the insufficient duration of efficacy and recurrence of the disease. AREAS COVERED This article reviews the cell populations in the bone marrow of MM, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow microenvironment. EXPERT OPINION The limits of CAR-T therapy in MM may related to the impairment of T cell activity in the bone marrow microenvironment. This article reviews the cell populations of the immune microenvironment and nonimmune microenvironment in the bone marrow of multiple myeloma, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow. This may provides a new idea for the CAR-T therapy of multiple myeloma.
Collapse
Affiliation(s)
- Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Lei Cheng
- Department of Pharmacy, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Shi-Hui Ren
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Bai-Tao Dou
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Huan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
8
|
Li M, Li J, Song Y. Hsa_Circ_0134426 Attenuates the Malignant Biological Behaviors of Multiple Myeloma by Suppressing miR-146b-3p to Upregulate NDNF. Mol Biotechnol 2022:10.1007/s12033-022-00618-6. [DOI: 10.1007/s12033-022-00618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|