1
|
Meneses J, Fernandes SR, Silva JC, Ferreira FC, Alves N, Pascoal-Faria P. JANUS: an open-source 3D printable perfusion bioreactor and numerical model-based design strategy for tissue engineering. Front Bioeng Biotechnol 2023; 11:1308096. [PMID: 38162184 PMCID: PMC10757336 DOI: 10.3389/fbioe.2023.1308096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Bioreactors have been employed in tissue engineering to sustain longer and larger cell cultures, managing nutrient transfer and waste removal. Multiple designs have been developed, integrating sensor and stimulation technologies to improve cellular responses, such as proliferation and differentiation. The variability in bioreactor design, stimulation protocols, and cell culture conditions hampered comparison and replicability, possibly hiding biological evidence. This work proposes an open-source 3D printable design for a perfusion bioreactor and a numerical model-driven protocol development strategy for improved cell culture control. This bioreactor can simultaneously deliver capacitive-coupled electric field and fluid-induced shear stress stimulation, both stimulation systems were validated experimentally and in agreement with numerical predictions. A preliminary in vitro validation confirmed the suitability of the developed bioreactor to sustain viable cell cultures. The outputs from this strategy, physical and virtual, are openly available and can be used to improve comparison, replicability, and control in tissue engineering applications.
Collapse
Affiliation(s)
- João Meneses
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia R. Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
| | - Paula Pascoal-Faria
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Portugal
| |
Collapse
|