1
|
Rabe M, Kurz C, Thummerer A, Landry G. Artificial intelligence for treatment delivery: image-guided radiotherapy. Strahlenther Onkol 2024:10.1007/s00066-024-02277-9. [PMID: 39138806 DOI: 10.1007/s00066-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased. AI as applied to modern IGRT is thus one area of RT where we can expect important developments in the near future. In this review article, after outlining modern IGRT and online ART workflows, we cover the role of AI in CBCT and MRI correction for dose calculation, auto-segmentation on IGRT imaging, motion management, and response assessment based on in-room imaging.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Bavaria, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Bavaria, Germany
| | - Adrian Thummerer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Bavaria, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Bavaria, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ and the LMU University Hospital Munich, Marchioninistraße 15, 81377, Munich, Bavaria, Germany.
- Bavarian Cancer Research Center (BZKF), Marchioninistraße 15, 81377, Munich, Bavaria, Germany.
| |
Collapse
|
2
|
Nardone V, Reginelli A, Rubini D, Gagliardi F, Del Tufo S, Belfiore MP, Boldrini L, Desideri I, Cappabianca S. Delta radiomics: an updated systematic review. LA RADIOLOGIA MEDICA 2024; 129:1197-1214. [PMID: 39017760 PMCID: PMC11322237 DOI: 10.1007/s11547-024-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and diverse clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, Pubmed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with 3 key search terms: 'radiomics,' 'texture,' and 'delta.' Studies were analyzed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (5 studies, 10.4%); rectal cancer (6 studies, 12.5%); lung cancer (12 studies, 25%); sarcoma (5 studies, 10.4%); prostate cancer (3 studies, 6.3%), head and neck cancer (6 studies, 12.5%); gastrointestinal malignancies excluding rectum (7 studies, 14.6%) and other disease sites (4 studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology, such asdifferential diagnosis, prognosis and prediction of treatment response, evaluation of side effects. Nevertheless, the studies included in this systematic review suffer from the bias of overall low methodological rigor, so that the conclusions are currently heterogeneous, not robust and hardly replicable. Further research with prospective and multicenter studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Dino Rubini
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Sara Del Tufo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
3
|
Mendes B, Domingues I, Santos J. Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions. J Clin Med 2024; 13:3907. [PMID: 38999473 PMCID: PMC11242211 DOI: 10.3390/jcm13133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Prostate Cancer (PCa) is asymptomatic at an early stage and often painless, requiring only active surveillance. External Beam Radiotherapy (EBRT) is currently a curative option for localised and locally advanced diseases and a palliative option for metastatic low-volume disease. Although highly effective, especially in a hypofractionation scheme, 17.4% to 39.4% of all patients suffer from cancer recurrence after EBRT. But, radiographic findings also correlate with significant differences in protein expression patterns. In the PCa EBRT workflow, several imaging modalities are available for grading, staging and contouring. Using image data characterisation algorithms (radiomics), one can provide a quantitative analysis of prognostic and predictive treatment outcomes. Methods: This literature review searched for original studies in radiomics for PCa in the context of EBRT. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this review includes 73 new studies and analyses datasets, imaging modality, segmentation technique, feature extraction, selection and model building methods. Results: Magnetic Resonance Imaging (MRI) is the preferred imaging modality for radiomic studies in PCa but Computed Tomography (CT), Positron Emission Tomography (PET) and Ultrasound (US) may offer valuable insights on tumour characterisation and treatment response prediction. Conclusions: Most radiomic studies used small, homogeneous and private datasets lacking external validation and variability. Future research should focus on collaborative efforts to create large, multicentric datasets and develop standardised methodologies, ensuring the full potential of radiomics in clinical practice.
Collapse
Affiliation(s)
- Bruno Mendes
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Domingues
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes-Quinta da Nora, 3030-199 Coimbra, Portugal
| | - João Santos
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- School of Medicine and Biomedical Sciences (ICBAS), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Delgadillo R, Deana AM, Ford JC, Studenski MT, Padgett KR, Abramowitz MC, Pra AD, Spieler BO, Dogan N. Increasing the efficiency of cone-beam CT based delta-radiomics using automated contours to predict radiotherapy-related toxicities in prostate cancer. Sci Rep 2024; 14:9563. [PMID: 38671043 PMCID: PMC11053114 DOI: 10.1038/s41598-024-60281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Extracting longitudinal image quantitative data, known as delta-radiomics, has the potential to capture changes in a patient's anatomy throughout the course of radiation treatment for prostate cancer. Some of the major challenges of delta-radiomics studies are contouring the structures for individual fractions and accruing patients' data in an efficient manner. The manual contouring process is often time consuming and would limit the efficiency of accruing larger sample sizes for future studies. The problem is amplified because the contours are often made by highly trained radiation oncologists with limited time to dedicate to research studies of this nature. This work compares the use of automated prostate contours generated using a deformable image-based algorithm to make predictive models of genitourinary and changes in total international prostate symptom score in comparison to manually contours for a cohort of fifty patients. Area under the curve of manual and automated models were compared using the Delong test. This study demonstrated that the delta-radiomics models were similar for both automated and manual delta-radiomics models.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Anthony M Deana
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
- Varian Medical Systems, Advanced Oncology Solutions, Avon, IN, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Matthew T Studenski
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Benjamin O Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12Th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Nakamoto T, Yamashita H, Jinnouchi H, Nawa K, Imae T, Takenaka S, Aoki A, Ohta T, Ozaki S, Nozawa Y, Nakagawa K. Cone-beam computed-tomography-based delta-radiomic analysis for investigating prognostic power for esophageal squamous cell cancer patients undergoing concurrent chemoradiotherapy. Phys Med 2024; 117:103182. [PMID: 38086310 DOI: 10.1016/j.ejmp.2023.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 01/15/2024] Open
Abstract
PURPOSE To investigate the prognostic power of cone-beam computed-tomography (CBCT)-based delta-radiomics in esophageal squamous cell cancer (ESCC) patients treated with concurrent chemoradiotherapy (CCRT). METHODS We collected data from 26 ESCC patients treated with CCRT. CBCT images acquired at five time points (1st-5th week) per patient during CCRT were used in this study. Radiomic features were extracted from the five CBCT images on the gross tumor volumes. Then, 17 delta-radiomic feature sets derived from five types of calculations were obtained for all the cases. Leave-one-out cross-validation was applied to investigate the prognostic power of CBCT-based delta-radiomic features. Feature selection and construction of a prediction model using Coxnet were performed using training samples. Then, the test sample was classified into high or low risk in each cross-validation fold. Survival analysis for the two groups were performed to evaluate the prognostic power of the extracted CBCT-based delta-radiomic features. RESULTS Four delta-radiomic feature sets indicated significant differences between the high- and low-risk groups (p < 0.05). The highest C-index in the 17 delta-radiomic feature sets was 0.821 (95 % confidence interval, 0.735-0.907). That feature set had p-value of the log-rank test and hazard ratio of 0.003 and 4.940 (95 % confidence interval, 1.391-17.544), respectively. CONCLUSIONS We investigated the potential of using CBCT-based delta-radiomics for prognosis of ESCC patients treated with CCRT. It was demonstrated that delta-radiomic feature sets based on the absolute value of relative difference obtained from the early to the middle treatment stages have high prognostic power for ESCC.
Collapse
Affiliation(s)
- Takahiro Nakamoto
- Department of Biological Science and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Jinnouchi
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kanabu Nawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshikazu Imae
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeharu Takenaka
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsushi Aoki
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Ohta
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sho Ozaki
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Yuki Nozawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Keiichi Nakagawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|