Anzai A, Yamasaki S, Bleichrodt A, Chowell G, Nishida A, Nishiura H. Epidemiological impact of travel enhancement on the inter-prefectural importation dynamics of COVID-19 in Japan, 2020.
MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023;
20:21499-21513. [PMID:
38124607 DOI:
10.3934/mbe.2023951]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Mobility restrictions were widely practiced to reduce contact with others and prevent the spatial spread of COVID-19 infection. Using inter-prefectural mobility and epidemiological data, a statistical model was devised to predict the number of imported cases in each Japanese prefecture. The number of imported cases crossing prefectural borders in 2020 was predicted using inter-prefectural mobility rates based on mobile phone data and prevalence estimates in the origin prefectures. The simplistic model was quantified using surveillance data of cases with an inter-prefectural travel history. Subsequently, simulations were carried out to understand how imported cases vary with the mobility rate and prevalence at the origin. Overall, the predicted number of imported cases qualitatively captured the observed number of imported cases over time. Although Hokkaido and Okinawa are the northernmost and the southernmost prefectures, respectively, they were sensitive to differing prevalence rate in Tokyo and Osaka and the mobility rate. Additionally, other prefectures were sensitive to mobility change, assuming that an increment in the mobility rate was seen in all prefectures. Our findings indicate the need to account for the weight of an inter-prefectural mobility network when implementing countermeasures to restrict human movement. If the mobility rates were maintained lower than the observed rates, then the number of imported cases could have been maintained at substantially lower levels than the observed, thus potentially preventing the unnecessary spatial spread of COVID-19 in late 2020.
Collapse