1
|
Rhon-Calderon EA, Hemphill CN, Savage AJ, Riesche L, Schultz RM, Bartolomei MS. In vitro fertilization induces reproductive changes in male mouse offspring and has multigenerational effects. JCI Insight 2025; 10:e188931. [PMID: 40036079 DOI: 10.1172/jci.insight.188931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
In vitro fertilization (IVF) is a noncoital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated 3 developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF-conceived and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal-to-placental weight ratios and changes in placenta gene expression and morphology regardless of sex. At 12 weeks of age, offspring showed higher body weights and differences in glucose, triglyceride, insulin, total cholesterol, HDL-C, and LDL/VLDL-C levels. Both sexes showed changes in gene expression in liver, testes, and ovaries and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations with a multigenerational impact.
Collapse
Affiliation(s)
- Eric A Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassidy N Hemphill
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J Savage
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laren Riesche
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Women's Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Tian L, Yu Y, Mao Z, Xu D, Zhang H, Qiao M, Chen T, Liu W. Genes and Pathways Underpinning Klinefelter Syndrome at Bulk and Single-Cell Levels. Biochem Genet 2024; 62:4851-4866. [PMID: 38374521 DOI: 10.1007/s10528-024-10689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Klinefelter syndrome (KS) is the most frequent genetic anomaly in infertile men. Given its unclear mechanism, we aim to investigate critical genes and pathways in the pathogenesis of KS based on three bulk and one single-cell transcriptome data sets from Gene Expression Omnibus. We merged two data sets (GSE42331 and GSE47584) with human KS whole blood samples. When comparing the control and KS samples, five hub genes, including defensin alpha 4 (DEFA4), bactericidal permeability increasing protein (BPI), myeloperoxidase (MPO), intelectin 1 (ITLN1), and Xg Glycoprotein (XG), were identified. Besides, infiltrated degree of certain immune cells such as CD56bright NK cell were positively associated with the expression of ITLN1 and XG. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated phosphatidylinositol 3-kinase (PI3K)/AKT pathway in KS. Gene set enrichment analysis followed by gene set variation analysis confirmed the upregulation of G2M checkpoint and heme metabolism in KS. Thereafter, the GSE200680 data set was used for external validation of the expression variation of hub genes from healthy to KS testicular samples, and each hub gene yielded excellent discriminatory capability for KS without exception. At the single-cell level, the GSE136353 data set was utilized to evaluate intercellular communication between different cell types in KS patient, and strong correlations were detected between macrophages/ dendritic cells/ NK cells and the other cell types. Collectively, we provided hub genes, pathways, immune cell infiltration degree, and cell-cell communication in KS, warranting novel insights into the pathogenesis of this disease.
Collapse
Affiliation(s)
- Linlin Tian
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Ziqing Mao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Dandan Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Hongbo Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Wen Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
| |
Collapse
|
3
|
Rhon-Calderon EA, Hemphill CN, Savage AJ, Riesche L, Schultz RM, Bartolomei MS. In Vitro Fertilization induces reproductive changes in male mouse offspring and has multigenerational effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622317. [PMID: 39574745 PMCID: PMC11580855 DOI: 10.1101/2024.11.06.622317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
In vitro fertilization (IVF) is a non-coital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring life. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated three developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal weight-to-placental weight ratios and changes in placenta morphology regardless of sex. At 12-weeks-of-age, offspring showed higher body weights and differences in glucose, triglycerides, insulin, total cholesterol, HDL and LDL/VLDL levels. Both sexes showed changes in gene expression in liver, testes and ovaries, and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations and transmit defects multigenerationally.
Collapse
|